Hyperbolic octahedron with $mmm$-symmetry
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 10 (2013), pp. 123-140.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider hyperbolic octahedra with $mmm$-symmetry. We provide an existence theorem for them and establish trigonometrical identities involving lengths of edges and dihedral angles (the sine-tangent rules). Then we apply the Schläfli formula to find the volume of prescribed octahedra in terms of dihedral angles explicitly.
Keywords: hyperbolic octahedron, mmm-symmetry, hyperbolic volume, existence theorem
Mots-clés : sine-tangent rule.
@article{SEMR_2013_10_a26,
     author = {N. V. Abrosimov and G. A. Baigonakova},
     title = {Hyperbolic octahedron with $mmm$-symmetry},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {123--140},
     publisher = {mathdoc},
     volume = {10},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2013_10_a26/}
}
TY  - JOUR
AU  - N. V. Abrosimov
AU  - G. A. Baigonakova
TI  - Hyperbolic octahedron with $mmm$-symmetry
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2013
SP  - 123
EP  - 140
VL  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2013_10_a26/
LA  - ru
ID  - SEMR_2013_10_a26
ER  - 
%0 Journal Article
%A N. V. Abrosimov
%A G. A. Baigonakova
%T Hyperbolic octahedron with $mmm$-symmetry
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2013
%P 123-140
%V 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2013_10_a26/
%G ru
%F SEMR_2013_10_a26
N. V. Abrosimov; G. A. Baigonakova. Hyperbolic octahedron with $mmm$-symmetry. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 10 (2013), pp. 123-140. http://geodesic.mathdoc.fr/item/SEMR_2013_10_a26/

[1] J. V. Uspensky, Theory of Equations, McGraw-Hill, New York, 1948

[2] D. M. Y. Sommerville, An Introduction to the Geometry of $n$ Dimensions, Dover, New York, 1958 | MR

[3] Sabitov I. Kh., “Ob'em mnogogrannika kak funktsiya dlin ego reber”, Fundament. i prikl. matem., 2:1 (1996), 305–307 | MR | Zbl

[4] R. Connelly, I. Sabitov, A. Walz, “The Bellows Conjecture”, Contrib. Algebra Geom., 38:1 (1997), 1–10 | MR | Zbl

[5] N. I. Lobachevskii, “Voobrazhaemaya geometriya”, v. I, Uchen. zap. Kazan. un-ta, 1835, 3–88

[6] J. Bolyai, Appendix. The Theory of Space, ed. F. Kárteszi, Akadémiai Kiadó, Budapest, 1987 | MR

[7] L. Schläfli, “Theorie der vielfachen Kontinuität”, Gesammelte mathematishe Abhandlungen, Birkhäuser, Basel, 1950 | MR

[8] R. Kellerhals, “On the volume of hyperbolic polyhedra”, Math. Ann., 285 (1989), 541–569 | DOI | MR | Zbl

[9] D. A. Derevnin, A. D. Mednykh, “Ob'em kuba Lamberta v sfericheskom prostranstve”, Matem. zametki, 86:2 (2009), 190–201 | DOI | MR | Zbl

[10] A. D. Mednykh, J. Parker, A. Yu. Vesnin, “On hyperbolic polyhedra arising as convex cores of quasi-Fuchsian punctured torus groups”, Bol. Soc. Mat. Mexicana (3), 10 (2004), 357–381 | MR | Zbl

[11] E. B. Vinberg, Geometriya-2, Itogi nauki i tekhniki. Sovremennye problemy matematiki, 29, VINITI, M., 1988 | MR

[12] G. Sforza, “Spazi metrico-proiettivi”, Ricerche di Estensionimetria differenziale, Serie III, VIII (1906), 3–66

[13] N. V. Abrosimov, A. D. Mednykh, “Volumes of polytopes in spaces of constant curvature”, Fields Inst. Commun., 2013 (to appear) , arXiv: 1302.4919 [math.MG]

[14] N. V. Abrosimov, “K resheniyu problemy Zeidelya ob ob'emakh giperbolicheskikh tetraedrov”, Sib. elektron. matem. izv., 6 (2009), 211–218 | MR

[15] N. V. Abrosimov, M. Godoy-Molina, A. D. Mednykh, “On the volume of a spherical octahedron with symmetries”, J. Math. Sci. (N. Y.), 161:1 (2009), 1–10 | DOI | MR | Zbl

[16] A. Ushijima, “A volume formula for generalized hyperbolic tetrahedra”, Non-Euclidean Geometries, Mathematics and Its Applications, 581, eds. A. Prékopa, E. Molnár, 2006, 249–265 | DOI | MR | Zbl

[17] R. V. Galiulin, S. N. Mikhalev, I. Kh. Sabitov, “Nekotorye prilozheniya formuly dlya ob'ema oktaedra”, Matem. zametki, 76:1 (2004), 27–43 | DOI | MR | Zbl

[18] G. A. Baigonakova, M. Godoi-Molina, A. D. Mednykh, “O geometricheskikh svoistvakh giperbolicheskogo oktaedra, obladayuschego $mmm$-simmetriei”, Vestnik KemGU, 3/1 (2011), 13–18

[19] L. Schläfli, “On the multiple integral $\int\int\ldots\int dx dy\ldots dz$ whose limits are $p_1 = a_1 x + b_1 y +\ldots + h_1 z > 0, p_2 > 0,\ldots p_n > 0$ and $x^2 + y^2 +\ldots + z^2 1$”, Quart. J. Math., 2 (1858), 269–300; 3 (1860), 54–68; 97–108

[20] H. Kneser, “Der Simplexinhalt in der nichteuklidischen Geometrie”, Deutsche Math., 1 (1936), 337–340

[21] J. W. Milnor, “How to Compute Volume in Hyperbolic Space”, Collected Papers, v. 1, Geometry, Publish or Perish, Houston, 1994, 189–212 | MR

[22] N. Burbaki, Funktsii deistvitelnogo peremennogo. Elementarnaya teoriya, Nauka, M., 1965 | MR