On Darboux--Egorov lattices
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 10 (2013), pp. 113-122.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article we construct discrete analogues of orthogonal curvilinear coordinate systems of Egorov type in ${\mathbb R}^n$ — Darboux-Egorov lattices by algebro-geometric methods.
Keywords: Darboux–Egorov lattices, algebro-geometric methods.
@article{SEMR_2013_10_a25,
     author = {E. I. Shamaev},
     title = {On {Darboux--Egorov} lattices},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {113--122},
     publisher = {mathdoc},
     volume = {10},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2013_10_a25/}
}
TY  - JOUR
AU  - E. I. Shamaev
TI  - On Darboux--Egorov lattices
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2013
SP  - 113
EP  - 122
VL  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2013_10_a25/
LA  - ru
ID  - SEMR_2013_10_a25
ER  - 
%0 Journal Article
%A E. I. Shamaev
%T On Darboux--Egorov lattices
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2013
%P 113-122
%V 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2013_10_a25/
%G ru
%F SEMR_2013_10_a25
E. I. Shamaev. On Darboux--Egorov lattices. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 10 (2013), pp. 113-122. http://geodesic.mathdoc.fr/item/SEMR_2013_10_a25/

[1] Darboux G., Leçons sur le systèmes orthogonaux et les coordonnées curvilignes, Gauthier-Villars, Paris, 1910 | Zbl

[2] Tsarev S. P., “Geometriya gamiltonovykh sistem gidrodinamicheskogo tipa. Obobschennyi metod godografa”, Izv. AN SSSR. Ser. matem., 54:5 (1990), 1048–1068 | MR | Zbl

[3] Dubrovin B., “Geometry of 2D topological field theories”, Lecture Notes in Math., 1620, Springer, Berlin, 1995, 120–348 | DOI | MR

[4] Zakharov V. E., “Description of the $n$-orthogonal curvilinear coordinate systems and Hamiltonian integrable systems of hydrodynamic type. I: Integration of the Lamé equations”, Duke Math. J., 94 (1998), 103–139 | DOI | MR | Zbl

[5] Krichever I. M., “Algebraic-geometric $n$-orthogonal curvilinear coordinate systems and the solution of associativity equations”, Funct. Anal. Appl., 31:1 (1997), 25–39 | DOI | MR | Zbl

[6] Mironov A. E., Taimanov I. A., “Orthogonal curvilinear coordinate systems that correspond to singular spectral curves”, Proc. Steklov Inst. Math., 255, no. 4, 2006, 169–184 | DOI | MR

[7] Cieśliński J., Doliwa A., Santini P. M., “The integrable discrete analogues of orthogonal coordinate systems are multi-dimensional circular lattices”, Phys. Lett. A, 235 (1997), 480–488 | DOI | MR | Zbl

[8] Akhmetshin A. A., Volvovskii Yu. S., Krichever I. M., “Diskretnye analogi metrik Darbu–Egorova”, Tr. MIAN, 225, 1999, 21–45 | MR | Zbl

[9] Doliwa A., Santini P. M., “The symmetric, $D$-invariant and Egorov reductions of the quadrilateral lattice”, Journal of Geometry and Physics, 36:1–2 (2000), 60–102 | MR | Zbl

[10] Taimanov I. A., “Singulyarnye spektralnye krivye v konechnozonnom integrirovanii”, Uspekhi matem. nauk, 66:1 (397) (2011), 111–150 | MR | Zbl

[11] Krichever I. M., “Algebro-geometricheskie $n$-ortogonalnye krivolineinye sistemy koordinat i resheniya uravnenii assotsiativnosti”, Funkts. anal. i ego pril., 31:1 (1997), 32–50 | MR | Zbl

[12] Krichever I. M., “Metody algebraicheskoi geometrii v teorii nelineinykh uravnenii”, Uspekhi matem. nauk, 32:6 (1977), 183–208 | Zbl

[13] Mañas M., Alonso L. M., Medina E., “Explicit solutions of integrable lattices”, Journal of Geometry and Physics, 42:3 (2002), 195–215 | MR | Zbl