On the dynamic programming principle for controlled diffusion processes in a cylindrical region
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 10 (2013), pp. 302-310
Voir la notice de l'article provenant de la source Math-Net.Ru
We prove the dynamic programming principle for a class of diffusion processes controlled up to the time of exit from a cylindrical region $[0,T)\times G$. It is assumed that the functional to be maximized is in the Lagrange form with nonnegative integrand. Besides this we only adopt the standard assumptions, ensuring the existence of a unique strong solution of a stochastic differential equation for the controlled process.
Keywords:
dynamic programming principle, exit time, value function, semicontinuity.
@article{SEMR_2013_10_a20,
author = {D. B. Rokhlin},
title = {On the dynamic programming principle for controlled diffusion processes in a cylindrical region},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {302--310},
publisher = {mathdoc},
volume = {10},
year = {2013},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SEMR_2013_10_a20/}
}
TY - JOUR AU - D. B. Rokhlin TI - On the dynamic programming principle for controlled diffusion processes in a cylindrical region JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2013 SP - 302 EP - 310 VL - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2013_10_a20/ LA - en ID - SEMR_2013_10_a20 ER -
D. B. Rokhlin. On the dynamic programming principle for controlled diffusion processes in a cylindrical region. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 10 (2013), pp. 302-310. http://geodesic.mathdoc.fr/item/SEMR_2013_10_a20/