On the dynamic programming principle for controlled diffusion processes in a cylindrical region
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 10 (2013), pp. 302-310.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove the dynamic programming principle for a class of diffusion processes controlled up to the time of exit from a cylindrical region $[0,T)\times G$. It is assumed that the functional to be maximized is in the Lagrange form with nonnegative integrand. Besides this we only adopt the standard assumptions, ensuring the existence of a unique strong solution of a stochastic differential equation for the controlled process.
Keywords: dynamic programming principle, exit time, value function, semicontinuity.
@article{SEMR_2013_10_a20,
     author = {D. B. Rokhlin},
     title = {On the dynamic programming principle for controlled diffusion processes in a cylindrical region},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {302--310},
     publisher = {mathdoc},
     volume = {10},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2013_10_a20/}
}
TY  - JOUR
AU  - D. B. Rokhlin
TI  - On the dynamic programming principle for controlled diffusion processes in a cylindrical region
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2013
SP  - 302
EP  - 310
VL  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2013_10_a20/
LA  - en
ID  - SEMR_2013_10_a20
ER  - 
%0 Journal Article
%A D. B. Rokhlin
%T On the dynamic programming principle for controlled diffusion processes in a cylindrical region
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2013
%P 302-310
%V 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2013_10_a20/
%G en
%F SEMR_2013_10_a20
D. B. Rokhlin. On the dynamic programming principle for controlled diffusion processes in a cylindrical region. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 10 (2013), pp. 302-310. http://geodesic.mathdoc.fr/item/SEMR_2013_10_a20/

[1] C. D. Aliprantis, K. C. Border, Infinite dimensional analysis. A hitchhiker's guide, Springer, Berlin, 2006 | MR

[2] J.-P. Aubin, Viability theory, Burkhäuser, Boston, 2009 | MR | Zbl

[3] L. F. Aurichi, F. D. Tall, “Lindelöf spaces which are indestructible, productive, or D”, Topology Appl., 159 (2012), 331–340 | MR | Zbl

[4] R. F. Bass, Stochastic processes, Cambridge University Press, Cambridge, 2011 | MR

[5] E. Bayraktar, Y.-J. Huang, “On the multi-dimensional controller and stopper games”, SIAM J. Control Optim., 51 (2013), 1263–1297 | MR

[6] G. Beer, Topologies on closed and closed convex sets, Kluwer, Dordrecht, 1993 | MR | Zbl

[7] V. S. Borkar, Optimal control of diffusion processes, Pitman Research Notes in Math., 203, Longman Scientific and Technical, Harlow, UK, 1989 | MR | Zbl

[8] B. Bouchard, N. Touzi, “Weak dynamic programming principle for viscosity solutions”, SIAM J. Control Optim., 49 (2011), 948–962 | MR | Zbl

[9] H. Dong, N. V. Krylov, “On time-inhomogeneous controlled diffusion processes in domains”, Ann. Probab., 35 (2007), 206–227 | MR | Zbl

[10] P. M. Esfahani, D. Chatterjee, J. Lygeros, The stochastic reach-avoid problem and set characterization for diffusions, 2012, 25 pp., arXiv: 1202.4375 [math.OC]

[11] W. Fleming, M. Soner, Controlled Markov processes and viscosity solutions, Springer, New York, 2006 | MR

[12] Math. USSR Izvestiya, 19 (1982), 41–-64 | MR | Zbl | Zbl

[13] Springer, New York, 1980 | MR

[14] J. R. Munkres, Topology, Prentice Hall, Upper Saddle River, NJ, 2000 | Zbl

[15] P. E. Protter, Stochastic integration and differential equations, Springer, Berlin, 2004 | MR

[16] D. Revuz, M. Yor, Continuous martingales and Brownian motion, Springer, Berlin, 1999 | MR | Zbl

[17] L. C. G. Rogers, D. Williams, Diffusions, Markov processes and martingales, v. 1, Foundations, Cambridge University Press, Cambridge, 2000 | MR

[18] N. Touzi, Optimal stochastic control, stochastic target problems, and backward SDE, Fields Institute Monographs, 29, Springer, New York, 2013 | MR | Zbl