Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2013_10_a18, author = {Yu. V. Lytkin}, title = {On groups critical with respect to a set of natural numbers}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {666--675}, publisher = {mathdoc}, volume = {10}, year = {2013}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2013_10_a18/} }
Yu. V. Lytkin. On groups critical with respect to a set of natural numbers. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 10 (2013), pp. 666-675. http://geodesic.mathdoc.fr/item/SEMR_2013_10_a18/
[1] V. D. Mazurov, W. J. Shi, “A criterion of unrecignizability by spectrum for finite groups”, Algebra and Logic, 51:2 (2012), 239–243 | MR | Zbl
[2] R. Brandl, W. J. Shi, “Finite groups whose element orders are consecutive integers”, J. Algebra, 143:2 (1991), 388–400 | MR | Zbl
[3] V. D. Mazurov, “Recognition of finite simple groups $S_4(q)$ by their element orders”, Algebra and Logic, 41:2 (2002), 166–198 | MR | Zbl
[4] J. S. Williams, “Prime graph components of finite groups”, J. Algebra, 69:2 (1981), 487–513 | MR | Zbl
[5] J. G. Thompson, “Normal $p$-complements for finite groups”, Math. Z., 72:2 (1960), 332–354 | MR | Zbl
[6] H. Zassenhaus, “Kennzeichnung endlicher linearean Gruppen als Permutationsgruppen”, Abh. Math. Sem. Univ. Hamburg, 11 (1936), 17–40 | MR
[7] H. Zassenhaus, “Über endliche Fastkörper”, Abh. Math. Sem. Univ. Hamburg, 11 (1936), 187–220 | MR
[8] B. Huppert, Endliche Gruppen, Springer-Verlag, Berlin–Heidelberg–New York, 1979
[9] D. Gorenstein, Finite groups, Chelsea Publishing Company, New York, N. Y., 1980 | MR | Zbl
[10] A. V. Zavarnitsine, “Finite simple groups with narrow prime spectrum”, Siberian electronic mathematical reports, 6 (2009), 1–12 | MR
[11] M. R. Aleeva, “On finite simple groups with the set of element orders as in a Frobenius group or a double Frobenius group”, Mathematical Notes, 73:3 (2003), 299–313 | MR | Zbl
[12] V. D. Mazurov, “A generalization of a theorem of Zassenhaus”, Vladikavkaz. Mat. Zh., 10:1 (2008), 40–52 | MR
[13] D. V. Lytkina, “Structure of a group with elements of order at most 4”, Siberian Math. J., 48:2 (2007), 283–287 | MR | Zbl
[14] GAP: Groups, algorithms, and programming http://www.gap-system.org