Edge-symmetric strongly regular graphs with at most 100 vertices
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 10 (2013), pp. 22-30.

Voir la notice de l'article provenant de la source Math-Net.Ru

Makhnev A.A. and Nirova M.S. remark that from 30 collections of parameters of unknown strongly regular graphs with at most 100 vertices only 11 can respond to edge-symmetric graphs. In this paper it is investigated the possible orders and the structures of subgraphs of the fixed points of automorphisms of strongly regular graph with parameters (100,33,8,12). It is proved that strongly regular graphs with parameters (100,33,8,12) and (100,66,44,42) are not edge-symmetric. As a corollary we have that a new edge-symmetric strongly regular graph with at most 100 vertices does not exist.
Keywords: strongly regular graph, edge-symmetric graph.
@article{SEMR_2013_10_a1,
     author = {M. S. Nirova},
     title = {Edge-symmetric strongly regular graphs with at most 100 vertices},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {22--30},
     publisher = {mathdoc},
     volume = {10},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2013_10_a1/}
}
TY  - JOUR
AU  - M. S. Nirova
TI  - Edge-symmetric strongly regular graphs with at most 100 vertices
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2013
SP  - 22
EP  - 30
VL  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2013_10_a1/
LA  - ru
ID  - SEMR_2013_10_a1
ER  - 
%0 Journal Article
%A M. S. Nirova
%T Edge-symmetric strongly regular graphs with at most 100 vertices
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2013
%P 22-30
%V 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2013_10_a1/
%G ru
%F SEMR_2013_10_a1
M. S. Nirova. Edge-symmetric strongly regular graphs with at most 100 vertices. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 10 (2013), pp. 22-30. http://geodesic.mathdoc.fr/item/SEMR_2013_10_a1/

[1] A. A. Makhnev, M. S. Nirova, “O nebolshikh simmetrichnykh silno regulyarnykh grafakh”, Doklady akademii nauk, 442:5 (2010), 512–515

[2] K. S. Efimov, A. A. Makhnev, “Ob avtomorfizmakh silno regulyarnogo grafa s parametrami $(88,27,6,9)$”, Doklady akademii nauk, 445:3 (2012), 247–250 | MR | Zbl

[3] A. Kh. Zhurtov, A. M. Kagazezheva, A. A. Makhnev, “Ob avtomorfizmakh silno regulyarnogo grafa s parametrami $(96,45,24,18)$”, Doklady akademii nauk, 446:1 (2012), 10–14 | Zbl

[4] I. N. Belousov, “Ob avtomorfizmakh silno regulyarnogo grafa s parametrami $(96,60,38,36)$”, Doklady akademii nauk, 449:4 (2013), 390–394

[5] K. S. Efimov, A. A. Makhnev, “Ob avtomorfizmakh silno regulyarnykh grafov s parametrami $(99,42,21,15)$ ili $(99,56,28,36)$”, Doklady akademii nauk, 450:2 (2013), 247–250

[6] A. K. Gutnova, “Ob avtomorfizmakh silno regulyarnogo grafa s parametrami $(245,64,18,16)$”, Sibirskie elektron. matem. izvestiya, 8 (2011), 4–18 | MR

[7] I. B. Gorshkov, “Raspoznavanie po spektru konechnykh prostykh grupp, prostye deliteli poryadkov kotorykh ne prevoskhodyat $17$”, Sibirskie elektron. matem. izvestiya, 7 (2010), 14–20 | MR