Finite model property for negative modalities
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 10 (2013), pp. 1-21.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that the logic $N^{Un}$ with negation as unnecessity operator and that its extension, a Heyting–Ockham logic $N^*$, have the finite model property and prove the analog of Dziobiak's theorem for extensions of these logics. Namely, we prove that an extension of $N^{Un}$ or $N^*$ is strongly complete wrt the class of finite frames iff it is tabular.
Keywords: Routley semantics, negation as modality, algebraic semantics
Mots-clés : Heyting–Ockham algebra.
@article{SEMR_2013_10_a0,
     author = {S. A. Drobyshevich and S. P. Odintsov},
     title = {Finite model property for negative modalities},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1--21},
     publisher = {mathdoc},
     volume = {10},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2013_10_a0/}
}
TY  - JOUR
AU  - S. A. Drobyshevich
AU  - S. P. Odintsov
TI  - Finite model property for negative modalities
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2013
SP  - 1
EP  - 21
VL  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2013_10_a0/
LA  - ru
ID  - SEMR_2013_10_a0
ER  - 
%0 Journal Article
%A S. A. Drobyshevich
%A S. P. Odintsov
%T Finite model property for negative modalities
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2013
%P 1-21
%V 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2013_10_a0/
%G ru
%F SEMR_2013_10_a0
S. A. Drobyshevich; S. P. Odintsov. Finite model property for negative modalities. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 10 (2013), pp. 1-21. http://geodesic.mathdoc.fr/item/SEMR_2013_10_a0/

[1] P. Blackburn, J. van Benthem, “Modal Logic: A Semantic Perspective”, ETHICS, 98 (1988), 501–517 | DOI

[2] M. Božić, K. Došen, “Models for normal intuitionistic modal logics”, Studia Logica, 43 (1984), 217–245 | DOI | MR | Zbl

[3] J. Berman, “Distributive lattices with an additional unary operation”, Aequationes Mathematicae, 16 (1977), 165–171 | DOI | MR | Zbl

[4] S. Burris, H. P. Sankappanavar, A course in universal algebra, Graduate Texts in Math., 78, Springer, New York, 1981 | DOI | MR | Zbl

[5] P. Cabalar, S. P. Odintsov, D. Pearce, “Logical foundations of well-founded semantics”, Principles of Knowledge Representation and Reasoning, Proceedings of the 10th International Conference (KR2006), eds. P. Doherty et al., AAAI Press, Menlo Park, California, 2006, 25–36

[6] A. Chagrov, M. Zakharyaschev, Modal logic, Clarendon Press, Oxford, 1997 | MR | Zbl

[7] K. Dosen, “Negative modal operators in intuitionistic logic”, Publication de l'Instutute Mathematique, Nouv. Ser., 35 (1984), 3–14 | MR | Zbl

[8] K. Dosen, “Negation as a modal operator”, Reports on Mathematical Logic, 20 (1986), 15–28 | MR | Zbl

[9] K. Dosen, Negation in the light of modal logic, What is negation?, Appl. Log. Ser., 13, eds. D. Gabbay et al., Kluwer Academic Publishers, Dordrecht, 1999, 77–86 | MR | Zbl

[10] S. A. Drobyshevich, “A hybrid calculus for logic $N^*$: residual finiteness and decidability”, Algebra and Logic, 50 (2011), 245–256 | DOI | MR | Zbl

[11] W. Dziobiak, “Strong completeness with respect to finite Kripke models”, Studia Logica, 40:3 (1981), 249–252 | DOI | MR | Zbl

[12] K. A. Kearnes, R. Willard, “Residually finite, congruence meet semi-distributive varieties of finite type have a finite residual bound”, Proceedings of the American Mathematical Society, 127:10 (1999), 2841–2850 | DOI | MR | Zbl

[13] S. P. Odintsov, “Combining intuitionistic connectives and Routley negation”, Siberian Electronic Mathematical Reports, 7 (2010), 21–41 | MR

[14] R. Routley, V. Routley, “The semantics of first degree entailment”, Noûs, 6 (1972), 335–359 | MR

[15] R. Sylvan, “Variations on Da Costa C Systems and Dual-Intuitionistic Logics. I: Analyses of $C_{\omega}$ and $CC_{\omega}$”, Studia Logica, 49 (1990), 47–65 | DOI | MR | Zbl

[16] A. Urquhart, “Distributive lattices with a dual homomorphic operation”, Studia Logica, 38 (1979), 201–209 | DOI | MR | Zbl

[17] D. Vakarelov, Theory of Negation in Certain Logical Systems. Algebraic and Semantical Approach, Ph. D. dissertation, University of Warsaw, 1976

[18] D. Vakarelov, “The non-classical negation in the works of Helena Rasiowa and their impact on the theory of negation”, Studia Logica, 84 (2006), 105–127 | DOI | MR | Zbl

[19] F. Wolter, “Superintuitionistic companions of classical modal logics”, Studia Logica, 58 (1997), 229–259 | DOI | MR | Zbl