Finite model property for negative modalities
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 10 (2013), pp. 1-21

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that the logic $N^{Un}$ with negation as unnecessity operator and that its extension, a Heyting–Ockham logic $N^*$, have the finite model property and prove the analog of Dziobiak's theorem for extensions of these logics. Namely, we prove that an extension of $N^{Un}$ or $N^*$ is strongly complete wrt the class of finite frames iff it is tabular.
Keywords: Routley semantics, negation as modality, algebraic semantics
Mots-clés : Heyting–Ockham algebra.
@article{SEMR_2013_10_a0,
     author = {S. A. Drobyshevich and S. P. Odintsov},
     title = {Finite model property for negative modalities},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1--21},
     publisher = {mathdoc},
     volume = {10},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2013_10_a0/}
}
TY  - JOUR
AU  - S. A. Drobyshevich
AU  - S. P. Odintsov
TI  - Finite model property for negative modalities
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2013
SP  - 1
EP  - 21
VL  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2013_10_a0/
LA  - ru
ID  - SEMR_2013_10_a0
ER  - 
%0 Journal Article
%A S. A. Drobyshevich
%A S. P. Odintsov
%T Finite model property for negative modalities
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2013
%P 1-21
%V 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2013_10_a0/
%G ru
%F SEMR_2013_10_a0
S. A. Drobyshevich; S. P. Odintsov. Finite model property for negative modalities. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 10 (2013), pp. 1-21. http://geodesic.mathdoc.fr/item/SEMR_2013_10_a0/