On self-definable subsets of $\aleph_0$-categorical weakly o-minimal structures
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 9 (2012), pp. 433-438.

Voir la notice de l'article provenant de la source Math-Net.Ru

The present paper concerns the generalization of the notion of o-minimality: weak o-minimality originally studied by D. Macpherson, D. Marker and Ch. Steinhorn in [1]. We study self-definable sets of an $\aleph_0$-categorical weakly o-minimal structure, and the main result is a criterion for goodness of every self-definable subset in an $\aleph_0$-categorical weakly o-minimal structure (Theorem 2.3).
Keywords: weak o-minimality, $\aleph_0$-categoricity, self-definable set.
@article{SEMR_2012_9_a6,
     author = {B. Sh. Kulpeshov},
     title = {On self-definable subsets of $\aleph_0$-categorical weakly o-minimal structures},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {433--438},
     publisher = {mathdoc},
     volume = {9},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2012_9_a6/}
}
TY  - JOUR
AU  - B. Sh. Kulpeshov
TI  - On self-definable subsets of $\aleph_0$-categorical weakly o-minimal structures
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2012
SP  - 433
EP  - 438
VL  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2012_9_a6/
LA  - en
ID  - SEMR_2012_9_a6
ER  - 
%0 Journal Article
%A B. Sh. Kulpeshov
%T On self-definable subsets of $\aleph_0$-categorical weakly o-minimal structures
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2012
%P 433-438
%V 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2012_9_a6/
%G en
%F SEMR_2012_9_a6
B. Sh. Kulpeshov. On self-definable subsets of $\aleph_0$-categorical weakly o-minimal structures. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 9 (2012), pp. 433-438. http://geodesic.mathdoc.fr/item/SEMR_2012_9_a6/

[1] H.D. Macpherson, D. Marker, and C. Steinhorn, “Weakly o-minimal structures and real closed fields”, Transactions of The American Mathematical Society, 352 (2000), 5435–5483 | DOI | MR | Zbl

[2] H.D. Macpherson, Ch. Steinhorn, “On variants of o-minimality”, The Annals of Pure and Applied Logic, 79 (1996), 165–209 | DOI | MR | Zbl

[3] D. Haskell and H.D. Macpherson, “A version of o-minimality for the $p$-adics”, The Journal of Symbolic Logic, 62 (1997), 1075–1092 | DOI | MR | Zbl

[4] R. Wencel, “Small theories of Boolean ordered o-minimal structures”, The Journal of Symbolic Logic, 67 (2002), 1385–1390 | DOI | MR | Zbl

[5] B.Sh. Kulpeshov and H.D. Macpherson, “Minimality conditions on circularly ordered structures”, Mathematical Logic Quarterly, 51 (2005), 377–399 | DOI | MR | Zbl

[6] V.V. Verbovskii, “O-stable ordered groups”, Siberian Advances in Mathematics, 22 (2012), 50–74 | DOI

[7] B.S. Baizhanov and V.V. Verbovskii, “O-stable theories”, Algebra and Logic, 50 (2011), 211–225 | DOI | MR

[8] B.S. Baizhanov, “Expansion of a model of a weakly o-minimal theory by a family of unary predicates”, The Journal of Symbolic Logic, 66 (2001), 1382–1414 | DOI | MR | Zbl

[9] B.Sh. Kulpeshov, “Weakly o-minimal structures and some of their properties”, The Journal of Symbolic Logic, 63 (1998), 1511–1528 | DOI | MR | Zbl

[10] B. Herwig, H.D. Macpherson, G. Martin, A. Nurtazin, J.K. Truss, “On $\aleph_0$–categorical weakly o-minimal structures”, The Annals of Pure and Applied Logic, 101 (2000), 65–93 | DOI | MR | Zbl

[11] B.Sh. Kulpeshov, “Criterion for binarity of $\aleph_0$-categorical weakly o-minimal theories”, The Annals of Pure and Applied Logic, 135 (2007), 354–367 | DOI | MR

[12] B.Sh. Kulpeshov, “Binary types in $\aleph_0$-categorical weakly o-minimal theories”, Mathematical Logic Quarterly, 57 (2011), 246–255 | DOI | MR | Zbl

[13] B.Sh. Kulpeshov, “Countably categorical quite o-minimal theories”, The Bulletin of Novosibirsk State University, 11 (2011), 45–57 | MR | Zbl