On self-definable subsets of $\aleph_0$-categorical weakly o-minimal structures
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 9 (2012), pp. 433-438
Voir la notice de l'article provenant de la source Math-Net.Ru
The present paper concerns the generalization of the notion of o-minimality: weak o-minimality originally studied by D. Macpherson, D. Marker and Ch. Steinhorn in [1]. We study self-definable sets of an $\aleph_0$-categorical weakly o-minimal structure, and the main result is a criterion for goodness of every self-definable subset in an $\aleph_0$-categorical weakly o-minimal structure (Theorem 2.3).
Keywords:
weak o-minimality, $\aleph_0$-categoricity, self-definable set.
@article{SEMR_2012_9_a6,
author = {B. Sh. Kulpeshov},
title = {On self-definable subsets of $\aleph_0$-categorical weakly o-minimal structures},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {433--438},
publisher = {mathdoc},
volume = {9},
year = {2012},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SEMR_2012_9_a6/}
}
TY - JOUR AU - B. Sh. Kulpeshov TI - On self-definable subsets of $\aleph_0$-categorical weakly o-minimal structures JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2012 SP - 433 EP - 438 VL - 9 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2012_9_a6/ LA - en ID - SEMR_2012_9_a6 ER -
B. Sh. Kulpeshov. On self-definable subsets of $\aleph_0$-categorical weakly o-minimal structures. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 9 (2012), pp. 433-438. http://geodesic.mathdoc.fr/item/SEMR_2012_9_a6/