On self-definable subsets of $\aleph_0$-categorical weakly o-minimal structures
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 9 (2012), pp. 433-438

Voir la notice de l'article provenant de la source Math-Net.Ru

The present paper concerns the generalization of the notion of o-minimality: weak o-minimality originally studied by D. Macpherson, D. Marker and Ch. Steinhorn in [1]. We study self-definable sets of an $\aleph_0$-categorical weakly o-minimal structure, and the main result is a criterion for goodness of every self-definable subset in an $\aleph_0$-categorical weakly o-minimal structure (Theorem 2.3).
Keywords: weak o-minimality, $\aleph_0$-categoricity, self-definable set.
@article{SEMR_2012_9_a6,
     author = {B. Sh. Kulpeshov},
     title = {On self-definable subsets of $\aleph_0$-categorical weakly o-minimal structures},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {433--438},
     publisher = {mathdoc},
     volume = {9},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2012_9_a6/}
}
TY  - JOUR
AU  - B. Sh. Kulpeshov
TI  - On self-definable subsets of $\aleph_0$-categorical weakly o-minimal structures
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2012
SP  - 433
EP  - 438
VL  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2012_9_a6/
LA  - en
ID  - SEMR_2012_9_a6
ER  - 
%0 Journal Article
%A B. Sh. Kulpeshov
%T On self-definable subsets of $\aleph_0$-categorical weakly o-minimal structures
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2012
%P 433-438
%V 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2012_9_a6/
%G en
%F SEMR_2012_9_a6
B. Sh. Kulpeshov. On self-definable subsets of $\aleph_0$-categorical weakly o-minimal structures. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 9 (2012), pp. 433-438. http://geodesic.mathdoc.fr/item/SEMR_2012_9_a6/