A solution of Wielandt's problem for the sporadic groups
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 9 (2012), pp. 294-305.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\pi$ be a set of primes. A finite group $G$ is a $D_\pi$-group if all maximal $\pi$-subgroups of $G$ are conjugate. In 1979 H. Wielandt posed the following problem: in which finite simple groups every subgroup is a $D_\pi$-group? We solve this problem for the sporadic groups.
Keywords: finite group
Mots-clés : sporadic group, $D_\pi$-group.
@article{SEMR_2012_9_a5,
     author = {N. Ch. Manzaeva},
     title = {A solution of {Wielandt's} problem for the sporadic groups},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {294--305},
     publisher = {mathdoc},
     volume = {9},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2012_9_a5/}
}
TY  - JOUR
AU  - N. Ch. Manzaeva
TI  - A solution of Wielandt's problem for the sporadic groups
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2012
SP  - 294
EP  - 305
VL  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2012_9_a5/
LA  - ru
ID  - SEMR_2012_9_a5
ER  - 
%0 Journal Article
%A N. Ch. Manzaeva
%T A solution of Wielandt's problem for the sporadic groups
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2012
%P 294-305
%V 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2012_9_a5/
%G ru
%F SEMR_2012_9_a5
N. Ch. Manzaeva. A solution of Wielandt's problem for the sporadic groups. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 9 (2012), pp. 294-305. http://geodesic.mathdoc.fr/item/SEMR_2012_9_a5/

[1] H. Wielandt, “Zusammengesetzte Gruppen: Hölders Programm heute”, The Santa Cruz Conference on Finite Groups (Santa Cruz, 1979), Proc. Sympos. Pure Math., 37, eds. B. Cooperstein and G. Mason, 1980, 161–173 | MR | Zbl

[2] P. Hall, “Theorems like Sylow's”, Proc. London Math. Soc, Ser. III, 6 No22 (1956), 286–304 | DOI | MR | Zbl

[3] The Kourovka notebook. Unsolved problems in group theory, 17, eds. V.D. Mazurov, E.I. Khukhro, Russian Academy of Sciences Siberian Division, Sobolev Institute of Mathematics, Novosibirsk,, 2010 | Zbl

[4] E.P. Vdovin, N.Ch. Manzaeva, D.O. Revin,, “O nasleduemosti svoistva $D_\pi$ podgruppami”, Trudy IMM UrO RAN, 17:4 (2011), 44–52

[5] J.H. Conway et al., Atlas of finite groups, Clarendon Press, Oxford, 1985 | MR | Zbl

[6] E.P. Vdovin, D.O. Revin, “Teoremy silovskogo tipa”, Uspekhi matematicheskikh nauk, 66:5 (2011), 3–46 | MR

[7] D.O. Revin, E.P. Vdovin, “Hall subgroups of finite groups”, Contemporary Mathematics, 402 (2006), 229–265 | DOI | MR

[8] D.O. Revin, “Svoistvo $D_\pi$ v konechnykh prostykh gruppakh”, Algebra i logika, 47:3 (2008), 364–394 | MR | Zbl

[9] B. Huppert, Endliche Gruppen I, Springer, Berlin, 1967 | MR | Zbl

[10] A.V. Zavarnitsine, “Finite Simple groups with narrow prime spectrum”, Siberian Electronic Mathematical Reports, 6 (2009), 1–12 | MR