A solution of Wielandt's problem for the sporadic groups
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 9 (2012), pp. 294-305

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\pi$ be a set of primes. A finite group $G$ is a $D_\pi$-group if all maximal $\pi$-subgroups of $G$ are conjugate. In 1979 H. Wielandt posed the following problem: in which finite simple groups every subgroup is a $D_\pi$-group? We solve this problem for the sporadic groups.
Keywords: finite group
Mots-clés : sporadic group, $D_\pi$-group.
@article{SEMR_2012_9_a5,
     author = {N. Ch. Manzaeva},
     title = {A solution of {Wielandt's} problem for the sporadic groups},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {294--305},
     publisher = {mathdoc},
     volume = {9},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2012_9_a5/}
}
TY  - JOUR
AU  - N. Ch. Manzaeva
TI  - A solution of Wielandt's problem for the sporadic groups
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2012
SP  - 294
EP  - 305
VL  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2012_9_a5/
LA  - ru
ID  - SEMR_2012_9_a5
ER  - 
%0 Journal Article
%A N. Ch. Manzaeva
%T A solution of Wielandt's problem for the sporadic groups
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2012
%P 294-305
%V 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2012_9_a5/
%G ru
%F SEMR_2012_9_a5
N. Ch. Manzaeva. A solution of Wielandt's problem for the sporadic groups. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 9 (2012), pp. 294-305. http://geodesic.mathdoc.fr/item/SEMR_2012_9_a5/