Interpolation formula for functions with a boundary layer component and its application to derivatives calculation
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 9 (2012), pp. 445-455

Voir la notice de l'article provenant de la source Math-Net.Ru

An interpolation formula for a function of one variable with a boundary layer component is constructed. Such function corresponds to the solution of a singular perturbed problem. The estimate of an accuracy is obtained. On a base of the constructed interpolation formula the difference formulas for derivatives of the function with a boundary layer component are obtained. Numerical resultes are discussed.
Keywords: function, boundary layer, difference formula for a derivative, accuracy estimation.
Mots-clés : nonpolynomial interpolation
@article{SEMR_2012_9_a34,
     author = {A. I. Zadorin and N. A. Zadorin},
     title = {Interpolation formula for functions with a boundary layer component and its application to derivatives calculation},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {445--455},
     publisher = {mathdoc},
     volume = {9},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2012_9_a34/}
}
TY  - JOUR
AU  - A. I. Zadorin
AU  - N. A. Zadorin
TI  - Interpolation formula for functions with a boundary layer component and its application to derivatives calculation
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2012
SP  - 445
EP  - 455
VL  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2012_9_a34/
LA  - en
ID  - SEMR_2012_9_a34
ER  - 
%0 Journal Article
%A A. I. Zadorin
%A N. A. Zadorin
%T Interpolation formula for functions with a boundary layer component and its application to derivatives calculation
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2012
%P 445-455
%V 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2012_9_a34/
%G en
%F SEMR_2012_9_a34
A. I. Zadorin; N. A. Zadorin. Interpolation formula for functions with a boundary layer component and its application to derivatives calculation. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 9 (2012), pp. 445-455. http://geodesic.mathdoc.fr/item/SEMR_2012_9_a34/