Interpolation formula for functions with a boundary layer component and its application to derivatives calculation
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 9 (2012), pp. 445-455.

Voir la notice de l'article provenant de la source Math-Net.Ru

An interpolation formula for a function of one variable with a boundary layer component is constructed. Such function corresponds to the solution of a singular perturbed problem. The estimate of an accuracy is obtained. On a base of the constructed interpolation formula the difference formulas for derivatives of the function with a boundary layer component are obtained. Numerical resultes are discussed.
Keywords: function, boundary layer, difference formula for a derivative, accuracy estimation.
Mots-clés : nonpolynomial interpolation
@article{SEMR_2012_9_a34,
     author = {A. I. Zadorin and N. A. Zadorin},
     title = {Interpolation formula for functions with a boundary layer component and its application to derivatives calculation},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {445--455},
     publisher = {mathdoc},
     volume = {9},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2012_9_a34/}
}
TY  - JOUR
AU  - A. I. Zadorin
AU  - N. A. Zadorin
TI  - Interpolation formula for functions with a boundary layer component and its application to derivatives calculation
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2012
SP  - 445
EP  - 455
VL  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2012_9_a34/
LA  - en
ID  - SEMR_2012_9_a34
ER  - 
%0 Journal Article
%A A. I. Zadorin
%A N. A. Zadorin
%T Interpolation formula for functions with a boundary layer component and its application to derivatives calculation
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2012
%P 445-455
%V 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2012_9_a34/
%G en
%F SEMR_2012_9_a34
A. I. Zadorin; N. A. Zadorin. Interpolation formula for functions with a boundary layer component and its application to derivatives calculation. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 9 (2012), pp. 445-455. http://geodesic.mathdoc.fr/item/SEMR_2012_9_a34/

[1] N.S. Bakhvalov, N.P. Zidkov, G.M. Kobel'kov, Numerical Methods, Nauka, Moscow, 1987 (Russian) | MR | Zbl

[2] Yu. S. Zav'yalov, B.I. Kvasov, V.L. Miroshnichenko, Methods of Spline Functions, Nauka, Moscow, 1980 (Russian) | MR

[3] A.I. Zadorin, “Refined-Mesh Interpolation Method for Functions with a Boundary-Layer Component”, Comp. Math. and Math. Physics, 48:9 (2008), 1634–1645 | DOI | MR

[4] A.I. Zadorin, “Method of interpolation for a boundary layer problem”, Sib. J. of Numer Math., 10:3 (2007), 267–275 (Russian)

[5] A.I. Zadorin, “Interpolation Method for a Function with a Singular Component”, Lect. Notes in Computer Science., 5434, Springer-Verlag, Berlin, 2009, 612–619 | DOI | Zbl

[6] A.I. Zadorin, N.A. Zadorin, “Spline interpolation on a uniform grid for functions with a boundary-layer component”, Comp. Math. and Math. Physics, 50:2 (2010), 211–223 | DOI | MR | Zbl

[7] A.I. Zadorin, “Spline interpolation of functions with a boundary layer component”, International Journal of Numerical Analysis and Modeling, series B, 2:2–3 (2011), 262–279 | MR | Zbl

[8] L.G. Vulkov, A.I. Zadorin, “Two-Grid Algorithms for an ordinary second order equation with exponential boundary layer in the solution”, International Journal of Numerical Analysis and Modeling, 7:3 (2010), 580–592 | MR | Zbl

[9] G.I. Shishkin, Discrete Approximations of Singularly Perturbed Elliptic and Parabolic Equations, Russian Academy of Sciences, Ural Branch, Ekaterinburg, 1992 (Russian)

[10] J.J.H. Miller, E. O'Riordan, G.I. Shishkin, Fitted Numerical Methods for Singular Perturbation Problems, World Scientific, Singapure, 1996 | MR

[11] V.I. Krilov, V.V. Bobkov, P.I. Monastirskii, Beginning of the Theory of Numerical Methods. Interpolation and Intergation, Nauka and Technic, Minsk, 1983 (Russian)