Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2012_9_a34, author = {A. I. Zadorin and N. A. Zadorin}, title = {Interpolation formula for functions with a boundary layer component and its application to derivatives calculation}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {445--455}, publisher = {mathdoc}, volume = {9}, year = {2012}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2012_9_a34/} }
TY - JOUR AU - A. I. Zadorin AU - N. A. Zadorin TI - Interpolation formula for functions with a boundary layer component and its application to derivatives calculation JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2012 SP - 445 EP - 455 VL - 9 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2012_9_a34/ LA - en ID - SEMR_2012_9_a34 ER -
%0 Journal Article %A A. I. Zadorin %A N. A. Zadorin %T Interpolation formula for functions with a boundary layer component and its application to derivatives calculation %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2012 %P 445-455 %V 9 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2012_9_a34/ %G en %F SEMR_2012_9_a34
A. I. Zadorin; N. A. Zadorin. Interpolation formula for functions with a boundary layer component and its application to derivatives calculation. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 9 (2012), pp. 445-455. http://geodesic.mathdoc.fr/item/SEMR_2012_9_a34/
[1] N.S. Bakhvalov, N.P. Zidkov, G.M. Kobel'kov, Numerical Methods, Nauka, Moscow, 1987 (Russian) | MR | Zbl
[2] Yu. S. Zav'yalov, B.I. Kvasov, V.L. Miroshnichenko, Methods of Spline Functions, Nauka, Moscow, 1980 (Russian) | MR
[3] A.I. Zadorin, “Refined-Mesh Interpolation Method for Functions with a Boundary-Layer Component”, Comp. Math. and Math. Physics, 48:9 (2008), 1634–1645 | DOI | MR
[4] A.I. Zadorin, “Method of interpolation for a boundary layer problem”, Sib. J. of Numer Math., 10:3 (2007), 267–275 (Russian)
[5] A.I. Zadorin, “Interpolation Method for a Function with a Singular Component”, Lect. Notes in Computer Science., 5434, Springer-Verlag, Berlin, 2009, 612–619 | DOI | Zbl
[6] A.I. Zadorin, N.A. Zadorin, “Spline interpolation on a uniform grid for functions with a boundary-layer component”, Comp. Math. and Math. Physics, 50:2 (2010), 211–223 | DOI | MR | Zbl
[7] A.I. Zadorin, “Spline interpolation of functions with a boundary layer component”, International Journal of Numerical Analysis and Modeling, series B, 2:2–3 (2011), 262–279 | MR | Zbl
[8] L.G. Vulkov, A.I. Zadorin, “Two-Grid Algorithms for an ordinary second order equation with exponential boundary layer in the solution”, International Journal of Numerical Analysis and Modeling, 7:3 (2010), 580–592 | MR | Zbl
[9] G.I. Shishkin, Discrete Approximations of Singularly Perturbed Elliptic and Parabolic Equations, Russian Academy of Sciences, Ural Branch, Ekaterinburg, 1992 (Russian)
[10] J.J.H. Miller, E. O'Riordan, G.I. Shishkin, Fitted Numerical Methods for Singular Perturbation Problems, World Scientific, Singapure, 1996 | MR
[11] V.I. Krilov, V.V. Bobkov, P.I. Monastirskii, Beginning of the Theory of Numerical Methods. Interpolation and Intergation, Nauka and Technic, Minsk, 1983 (Russian)