Solvability of the Stationary Optimal Control Problem for Motion Equations of Second Grade Fluids
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 9 (2012), pp. 554-560

Voir la notice de l'article provenant de la source Math-Net.Ru

We investigate the optimal Dirichlet boundary control problem for stationary motion equations of second grade fluids. We consider boundary control of the flow on a bounded domain in $\mathbb{R}^n$, $n=2,3$. We show the existence of a weak solution minimizing a given cost functional.
Keywords: hydrodynamics, non-Newtonian fluids, second grade fluids, optimal control, Dirichlet boundary control.
@article{SEMR_2012_9_a30,
     author = {E. S. Baranovskii},
     title = {Solvability of the {Stationary} {Optimal} {Control} {Problem} for {Motion} {Equations} of {Second} {Grade} {Fluids}},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {554--560},
     publisher = {mathdoc},
     volume = {9},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2012_9_a30/}
}
TY  - JOUR
AU  - E. S. Baranovskii
TI  - Solvability of the Stationary Optimal Control Problem for Motion Equations of Second Grade Fluids
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2012
SP  - 554
EP  - 560
VL  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2012_9_a30/
LA  - ru
ID  - SEMR_2012_9_a30
ER  - 
%0 Journal Article
%A E. S. Baranovskii
%T Solvability of the Stationary Optimal Control Problem for Motion Equations of Second Grade Fluids
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2012
%P 554-560
%V 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2012_9_a30/
%G ru
%F SEMR_2012_9_a30
E. S. Baranovskii. Solvability of the Stationary Optimal Control Problem for Motion Equations of Second Grade Fluids. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 9 (2012), pp. 554-560. http://geodesic.mathdoc.fr/item/SEMR_2012_9_a30/