Optimal control of dynamic system under insufficient information
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 9 (2012), pp. 329-345.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of translating a linear system in condition of dynamic balance under simultaneous action of an unknown disturbance and time-optimal control is considered. The optimal control is computed along the phase trajectory and periodically updated for the discrete phase coordinate values. It is proved that the phase trajectory comes into the dynamic equilibrium point and performs undamped periodic motion (stable limit cycle). Location of the dynamic equilibrium point and the limit cycle form are considered as a function of different parameters. With the disturbance computed in carrying out the control, accuracy of the falling into required final state increases. The method of evaluating attainable accuracy is given. Results of modeling and numerical calculation are presented.
Keywords: optimal control, speed, computing time, disturbance, phase trajectory, dynamic balance, limit cycle, translating accuracy, linear system.
@article{SEMR_2012_9_a27,
     author = {V. M. Aleksandrov},
     title = {Optimal control of dynamic system under insufficient information},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {329--345},
     publisher = {mathdoc},
     volume = {9},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2012_9_a27/}
}
TY  - JOUR
AU  - V. M. Aleksandrov
TI  - Optimal control of dynamic system under insufficient information
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2012
SP  - 329
EP  - 345
VL  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2012_9_a27/
LA  - ru
ID  - SEMR_2012_9_a27
ER  - 
%0 Journal Article
%A V. M. Aleksandrov
%T Optimal control of dynamic system under insufficient information
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2012
%P 329-345
%V 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2012_9_a27/
%G ru
%F SEMR_2012_9_a27
V. M. Aleksandrov. Optimal control of dynamic system under insufficient information. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 9 (2012), pp. 329-345. http://geodesic.mathdoc.fr/item/SEMR_2012_9_a27/

[1] Pontryagin L.S., Boltyanskii V.G., Gamkrelidze R.V., Mischenko E.F., Matematicheskaya teoriya optimalnykh protsessov, Nauka, M., 1976

[2] Boltyanskii V.G., Matematicheskie metody optimalnogo upravleniya, Nauka, M., 1969

[3] Aleksandrov V.M., “Posledovatelnyi sintez optimalnogo upravleniya”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 39:9 (1999), 1464–1478 | MR | Zbl

[4] Aleksandrov V.M., “Skhodimost metoda posledovatelnogo sinteza optimalnogo upravleniya”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 39:10 (1999), 1650–1661 | MR | Zbl

[5] Nesh D., “Beskoalitsionnye igry”, Matrichnye igry, ed. N.N.Vorobev, Fizmatgiz, M., 1961

[6] Belolipetskii A.A., “Chislennyi metod resheniya lineinoi zadachi optimalnogo upravleniya svedeniem ee k zadache Koshi”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 17:6 (1977), 1380–1386 | MR | Zbl

[7] Kiselev Yu.N., “Bystroskhodyaschiesya algoritmy dlya lineinogo optimalnogo bystrodeistviya”, Kibernetika, 62:6 (1990), 47–57 | Zbl

[8] Balashevich N.V., Gabasov R., Kirillova F.M., “Chislennye metody programmnoi i pozitsionnoi optimizatsii lineinykh sistem upravleniya”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 40:6 (2000), 838–859 | MR | Zbl

[9] Gabasov R., Kirillova F.M., “Optimalnoe upravlenie v rezhime realnogo vremeni”, Vtoraya mezhdunarodnaya konferentsiya po problemam upravleniya (17–19 iyunya 2003 g.), Plenarnye doklady, IPU im. V.A. Trapeznikova RAN, M., 2003, 20–47

[10] Fedorenko R.P., Priblizhennoe reshenie zadach optimalnogo upravleniya, Nauka, M., 1978

[11] Srochko V.A., Iteratsionnye metody resheniya zadach optimalnogo upravleniya, Fizmatlit, M., 2000

[12] Hartl R.E., Sethi S.P., Vickson R.G., “A servey of the maxsimum principle for optimal control problems with state constraints”, SIAM Review, 37 (1995), 181–218 | DOI | MR | Zbl

[13] Aleksandrov V.M., “Iteratsionnyi metod vychisleniya v realnom vremeni optimalnogo po bystrodeistviyu upravleniya”, Cibirskii zhurnal vychislitelnoi matematiki, 10:1 (2007), 1–28

[14] Aleksandrov V.M., “Postroenie approksimiruyuschei konstruktsii dlya vychisleniya i realizatsii optimalnogo po bystrodeistviyu upravleniya v realnom vremeni”, Cibirskii zhurnal vychislitelnoi matematiki, 15:1 (2012), 1–19