Mathematical models of a hydraulic shock in a viscous liquid
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 9 (2012), pp. 227-246.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present paper we derive mathematical models of the pressure distribution field near the well during the hydraulic shock. To get these models we follow the scheme, suggested by J. Keller and R. Burridge. The scheme is based upon a rigorous homogenization of the exact mathematical model, describing on a microscopic level the joint motion of an elastic solid skeleton and a viscous fluid filling the pores.
Keywords: hydraulic shock, Stokes and Lamé's equations, two-scale convergence.
@article{SEMR_2012_9_a25,
     author = {I. V. Nekrasova},
     title = {Mathematical models of a hydraulic shock in a viscous liquid},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {227--246},
     publisher = {mathdoc},
     volume = {9},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2012_9_a25/}
}
TY  - JOUR
AU  - I. V. Nekrasova
TI  - Mathematical models of a hydraulic shock in a viscous liquid
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2012
SP  - 227
EP  - 246
VL  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2012_9_a25/
LA  - ru
ID  - SEMR_2012_9_a25
ER  - 
%0 Journal Article
%A I. V. Nekrasova
%T Mathematical models of a hydraulic shock in a viscous liquid
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2012
%P 227-246
%V 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2012_9_a25/
%G ru
%F SEMR_2012_9_a25
I. V. Nekrasova. Mathematical models of a hydraulic shock in a viscous liquid. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 9 (2012), pp. 227-246. http://geodesic.mathdoc.fr/item/SEMR_2012_9_a25/

[1] J.I. Adachi, E. Detournay, A.P. Peirce, “Analysis of the classical pseudo-3D model for hydraulic fracture with equilibrium height growth across stress barriers”, Int. J. of Rock Mechanics and Mining Sciences, 47 (2010), 625–630 | DOI

[2] Y. Kovalyshen, E. Detournay, “A Reexamination of the Classical PKNModel of Hydraulic Fracture”, Transp. Porous Med., 81 (2010), 317–339 | DOI

[3] Liang Weiguoab, Zhao Yangshenga, “A mathematical model for solid liquid and mass transfer coupling and numerical simulation for hydraulic fracture in rock salt”, Progress in Natural Science, 15:8 (2005), 742–748 | DOI

[4] T.T. Garipov, “Modelirovanie protsessa gidrorazryva plasta v porouprugoi srede”, Mat. Modelirovanie, 18:6 (2006), 53–69 | MR | Zbl

[5] A.M. Meirmanov, “Double porosity models in incompressible poroelastic media”, Mathematical Models and Methods in Applied Sciences, 20:4 (2010), 635–659 | DOI | MR | Zbl

[6] R. Burridge and J.B. Keller, “Poroelasticity equations derived from microstructure”, Journal of Acoustic Society of America, 70:4 (1981), 1140–1146 | DOI | Zbl

[7] A.M. Meirmanov, “Metod dvukhmasshtabnoi skhodimosti Nguetsenga v zadachakh filtratsii i seismoakustiki v uprugikh poristykh sredakh”, Sib. Mat. Zhurnal, 48:3 (2007), 645–667 | MR | Zbl

[8] A.M. Meirmanov, “A description of seismic acoustic wave propagation in porous media via homogenization”, SIAM J. Math. Anal., 40:3 (2008), 1272–1289 | DOI | MR | Zbl

[9] A.M. Meirmanov, “Derivation of equations of seismic and acoustic wave propagation and equations of filtration via homogenization of periodic structures”, Journal of Mathematical Sciences, 163:2 (2009), 111–172 | DOI | MR

[10] G. Nguetseng, “A general convergence result for a functional related to the theory of homogenization”, SIAM J. Math. Anal., 20:3 (1989), 608–623 | DOI | MR | Zbl

[11] E. Acerbi, V. Chiado Piat, G. Dal Maso, D. Percivale, “An extension theorem from connected sets and homogenization in general periodic domains”, Nonlinear Anal., 18 (1992), 481–496 | DOI | MR | Zbl

[12] G. Nguetseng, “Asymptotic analysis for a stiff variational problem arising in mechanics”, SIAM J. Math. Anal., 21 (1990), 1394–1414 | DOI | MR | Zbl

[13] C. Conca, “On the application of the homogenization theory to a class of problems arising in fluid mechanics”, J. math. pures et appl., 64 (1985), 31–75 | MR | Zbl

[14] O.A. Ladyzhenskaya, Matematicheskie voprosy dinamiki vyazkoi neszhimaemoi zhidkosti, Nauka, Moskva, 1970 | MR