Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2012_9_a25, author = {I. V. Nekrasova}, title = {Mathematical models of a hydraulic shock in a viscous liquid}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {227--246}, publisher = {mathdoc}, volume = {9}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2012_9_a25/} }
I. V. Nekrasova. Mathematical models of a hydraulic shock in a viscous liquid. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 9 (2012), pp. 227-246. http://geodesic.mathdoc.fr/item/SEMR_2012_9_a25/
[1] J.I. Adachi, E. Detournay, A.P. Peirce, “Analysis of the classical pseudo-3D model for hydraulic fracture with equilibrium height growth across stress barriers”, Int. J. of Rock Mechanics and Mining Sciences, 47 (2010), 625–630 | DOI
[2] Y. Kovalyshen, E. Detournay, “A Reexamination of the Classical PKNModel of Hydraulic Fracture”, Transp. Porous Med., 81 (2010), 317–339 | DOI
[3] Liang Weiguoab, Zhao Yangshenga, “A mathematical model for solid liquid and mass transfer coupling and numerical simulation for hydraulic fracture in rock salt”, Progress in Natural Science, 15:8 (2005), 742–748 | DOI
[4] T.T. Garipov, “Modelirovanie protsessa gidrorazryva plasta v porouprugoi srede”, Mat. Modelirovanie, 18:6 (2006), 53–69 | MR | Zbl
[5] A.M. Meirmanov, “Double porosity models in incompressible poroelastic media”, Mathematical Models and Methods in Applied Sciences, 20:4 (2010), 635–659 | DOI | MR | Zbl
[6] R. Burridge and J.B. Keller, “Poroelasticity equations derived from microstructure”, Journal of Acoustic Society of America, 70:4 (1981), 1140–1146 | DOI | Zbl
[7] A.M. Meirmanov, “Metod dvukhmasshtabnoi skhodimosti Nguetsenga v zadachakh filtratsii i seismoakustiki v uprugikh poristykh sredakh”, Sib. Mat. Zhurnal, 48:3 (2007), 645–667 | MR | Zbl
[8] A.M. Meirmanov, “A description of seismic acoustic wave propagation in porous media via homogenization”, SIAM J. Math. Anal., 40:3 (2008), 1272–1289 | DOI | MR | Zbl
[9] A.M. Meirmanov, “Derivation of equations of seismic and acoustic wave propagation and equations of filtration via homogenization of periodic structures”, Journal of Mathematical Sciences, 163:2 (2009), 111–172 | DOI | MR
[10] G. Nguetseng, “A general convergence result for a functional related to the theory of homogenization”, SIAM J. Math. Anal., 20:3 (1989), 608–623 | DOI | MR | Zbl
[11] E. Acerbi, V. Chiado Piat, G. Dal Maso, D. Percivale, “An extension theorem from connected sets and homogenization in general periodic domains”, Nonlinear Anal., 18 (1992), 481–496 | DOI | MR | Zbl
[12] G. Nguetseng, “Asymptotic analysis for a stiff variational problem arising in mechanics”, SIAM J. Math. Anal., 21 (1990), 1394–1414 | DOI | MR | Zbl
[13] C. Conca, “On the application of the homogenization theory to a class of problems arising in fluid mechanics”, J. math. pures et appl., 64 (1985), 31–75 | MR | Zbl
[14] O.A. Ladyzhenskaya, Matematicheskie voprosy dinamiki vyazkoi neszhimaemoi zhidkosti, Nauka, Moskva, 1970 | MR