Mathematical models of a hydraulic shock in a viscous liquid
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 9 (2012), pp. 227-246

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present paper we derive mathematical models of the pressure distribution field near the well during the hydraulic shock. To get these models we follow the scheme, suggested by J. Keller and R. Burridge. The scheme is based upon a rigorous homogenization of the exact mathematical model, describing on a microscopic level the joint motion of an elastic solid skeleton and a viscous fluid filling the pores.
Keywords: hydraulic shock, Stokes and Lamé's equations, two-scale convergence.
@article{SEMR_2012_9_a25,
     author = {I. V. Nekrasova},
     title = {Mathematical models of a hydraulic shock in a viscous liquid},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {227--246},
     publisher = {mathdoc},
     volume = {9},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2012_9_a25/}
}
TY  - JOUR
AU  - I. V. Nekrasova
TI  - Mathematical models of a hydraulic shock in a viscous liquid
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2012
SP  - 227
EP  - 246
VL  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2012_9_a25/
LA  - ru
ID  - SEMR_2012_9_a25
ER  - 
%0 Journal Article
%A I. V. Nekrasova
%T Mathematical models of a hydraulic shock in a viscous liquid
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2012
%P 227-246
%V 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2012_9_a25/
%G ru
%F SEMR_2012_9_a25
I. V. Nekrasova. Mathematical models of a hydraulic shock in a viscous liquid. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 9 (2012), pp. 227-246. http://geodesic.mathdoc.fr/item/SEMR_2012_9_a25/