Weighted a priori estimate in straightenable domains of local Lyapunov-Dini type
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 9 (2012), pp. 65-150.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove the well-posedness of the Dirichlet problem for the Poisson equation in a weighted Sobolev space under weak assumptions both on the weight and on the boundary of the domain. The weight is supposed to satisfy the Muckenhoupt condition on the off-boundary cubes and an additional condition near the boundary. The boundary is Lipschitz, flat enough, straightenable (in a sense close to the one studied before by the author) and is either straightenable with small constant or satisfies the so-called local Lyapunov-Dini condition. The proof amounts to an a priori estimate obtained via localizing the problem, straightening the boundary, $L^p_w$-discretizing singular integrals and estimating a number of dyadic sums. Our results strengthen some of the results of V. G. Maz'ya, T. O. Shaposhnikova, K. Schumacher, R. G. Durán, M. Sanmartino and M. Toschi.
Mots-clés : Poisson equation, dyadic cube.
Keywords: weighted Sobolev space, Muckenhoupt weight, power weight, Lyapunov-Dini domain, straightenable domain, pointwise multiplier, discretization
@article{SEMR_2012_9_a23,
     author = {A. I. Parfenov},
     title = {Weighted a priori estimate in straightenable domains of local {Lyapunov-Dini} type},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {65--150},
     publisher = {mathdoc},
     volume = {9},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2012_9_a23/}
}
TY  - JOUR
AU  - A. I. Parfenov
TI  - Weighted a priori estimate in straightenable domains of local Lyapunov-Dini type
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2012
SP  - 65
EP  - 150
VL  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2012_9_a23/
LA  - ru
ID  - SEMR_2012_9_a23
ER  - 
%0 Journal Article
%A A. I. Parfenov
%T Weighted a priori estimate in straightenable domains of local Lyapunov-Dini type
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2012
%P 65-150
%V 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2012_9_a23/
%G ru
%F SEMR_2012_9_a23
A. I. Parfenov. Weighted a priori estimate in straightenable domains of local Lyapunov-Dini type. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 9 (2012), pp. 65-150. http://geodesic.mathdoc.fr/item/SEMR_2012_9_a23/

[1] D.E. Apushkinskaya, A.I. Nazarov, “Ellipticheskaya zadacha Dirikhle v vesovykh prostranstvakh”, Zap. nauchn. sem. POMI, 288 (2002), 14–33 | MR | Zbl

[2] O.V. Besov, V.P. Ilin, S.M. Nikolskii, Integralnye predstavleniya funktsii i teoremy vlozheniya, Nauka, Moskva, 1975 | MR | Zbl

[3] Yu.A. Brudnyi, “Mnogomernyi analog odnoi teoremy Uitni”, Mat. sbornik, 124 (1970), 175–191 | MR | Zbl

[4] D. Gilbarg, M. Trudinger, Ellipticheskie differentsialnye uravneniya s chastnymi proizvodnymi vtorogo poryadka, Nauka, Moskva, 1989 | MR | Zbl

[5] E.M. Dynkin, B.P. Osilenker, “Vesovye otsenki singulyarnykh integralov i ikh prilozheniya”, Itogi nauki i tekhn. Ser. Mat. anal., 21, 1983, 42–129 | MR

[6] L.I. Kamynin, “Teorema o kosoi proizvodnoi dlya parabolicheskikh uravnenii vtorogo poryadka, dopuskayuschikh slaboe vyrozhdenie. I”, Diff. uravn., 24 (1988), 650–661 | MR | Zbl

[7] L.I. Kamynin, B.N. Khimchenko, “O granichnykh otsenkakh Lipshitsa dlya resheniya elliptiko-parabolicheskogo uravneniya 2-go poryadka”, DAN SSSR, 212 (1973), 544–547 | MR | Zbl

[8] V.A. Kondratev, S.D. Eidelman, “Ob usloviyakh na granichnuyu poverkhnost v teorii ellipticheskikh granichnykh zadach”, DAN SSSR, 246 (1979), 812–815 | MR

[9] V.G. Mazya, “O koertsitivnosti zadachi Dirikhle v oblasti s neregulyarnoi granitsei”, Izv. vuzov. Matematika, 1973, 64–76

[10] V.G. Mazya, Prostranstva S. L. Soboleva, Izd-vo LGU, Leningrad, 1985 | MR

[11] V.G. Mazya, T.O. Shaposhnikova, Multiplikatory v prostranstvakh differentsiruemykh funktsii, Izd-vo LGU, Leningrad, 1986 | MR

[12] E.I. Moiseev, “Teoriya potentsiala dlya oblastei Lyapunova–Dini”, DAN SSSR, 192 (1970), 990–992 | MR | Zbl

[13] P.V. Paramonov, “O $C^1$-prodolzhenii i $C^1$-otrazhenii subgarmonicheskikh funktsii s oblastei Lyapunova–Dini na $\mathbb R^N$”, Mat. sb., 199 (2008), 79–116 | MR | Zbl

[14] P.V. Paramonov, “O $C^m$-prodolzhenii subgarmonichekikh funktsii s oblastei Lyapunova–Dini na $\mathbb R^N$”, Mat. zametki, 89 (2011), 149–152 | MR | Zbl

[15] A.I. Parfenov, “Diskretnaya norma na lipshitsevoi poverkhnosti i sobolevskaya raspryamlyaemost granitsy”, Mat. trudy, 10 (2007), 163–186 | MR

[16] A.I. Parfenov, “Kriterii raspryamlyaemosti lipshitsevoi poverkhnosti po Lizorkinu–Tribelyu. I”, Mat. trudy, 12 (2009), 144–204 | MR

[17] A.I. Parfenov, “Kriterii raspryamlyaemosti lipshitsevoi poverkhnosti po Lizorkinu–Tribelyu. III”, Mat. trudy, 13 (2010), 139–178 | MR

[18] A.I. Parfenov, “Kharakterizatsiya multiplikatorov v prostranstvakh Khedberga–Netrusova”, Mat. trudy, 14 (2011), 158–194 | MR

[19] A.I. Parfenov, Zadacha Dirikhle v plokhikh oblastyakh s vesami makenkhauptovskogo tipa, preprint # 274, IM SO RAN, Novosibirsk, 2011 | MR

[20] I. Stein, Singulyarnye integraly i differentsialnye svoistva funktsii, Mir, Moskva, 1973 | MR

[21] Kh. Tribel, Teoriya interpolyatsii, funktsionalnye prostranstva, differentsialnye operatory, Mir, Moskva, 1980 | MR

[22] L. Khërmander, Analiz lineinykh differentsialnykh operatorov s chastnymi proizvodnymi, v. 1, Mir, Moskva, 1986

[23] L.K. Evans, R.F. Gariepi, Teoriya mery i tonkie svoistva funktsii, Nauchnaya kniga (IDMI), Novosibirsk, 2002

[24] V. Adolfsson, L. Escauriaza, “$C^{1,\alpha}$ domains and unique continuation at the boundary”, Comm. Pure Appl. Math., 50 (1997), 935–969 | 3.0.CO;2-H class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR

[25] M.P. Aldred, D.H. Armitage, “Inequalities for surface integrals of non-negative subharmonic functions”, Comment. Math. Univ. Carolin., 39 (1998), 101–113 | MR | Zbl

[26] R. Alvarado, D. Brigham, V. Maz'ya, M. Mitrea, E. Ziadé, “On the regularity of domains satisfying a uniform hour-glass condition and a sharp version of the Hopf-Oleinik boundary point principle”, J. Math. Sci., 176 (2011), 281–360 | DOI

[27] T. Arnarson, J. Eriksson, “On the size of the non-coincidence set of parabolic obstacle problems with applications to American option pricing”, Math. Scand., 101 (2007), 148–160 | MR | Zbl

[28] M. Borsuk, V. Kondratiev, Elliptic Boundary Value Problems of Second Order in Piecewise Smooth Domains, Elsevier, Amsterdam, 2006 | MR | Zbl

[29] K. Burdzy, “Brownian excursions and minimal thinness. Part III: Applications to the angular derivative problem”, Math. Z., 192 (1986), 89–107 | DOI | MR | Zbl

[30] S. Byun, L. Wang, “Elliptic equations with BMO coefficients in Reifenberg domains”, Comm. Pure Appl. Math., 57 (2004), 1283–1310 | DOI | MR | Zbl

[31] T.F. Carroll, “A classical proof of Burdzy's theorem on the angular derivative”, J. London Math. Soc., 38 (1988), 423–441 | MR | Zbl

[32] T. Carroll, “Boundary behaviour of positive harmonic functions on Lipschitz domains”, Ann. Acad. Sci. Fenn. Math., 27 (2002), 231–236 | MR | Zbl

[33] S.-K. Chua, “Extension theorems on weighted Sobolev spaces”, Indiana Univ. Math. J., 41 (1992), 1027–1076 | DOI | MR | Zbl

[34] S.-K. Chua, “On weighted Sobolev spaces”, Canad. J. Math., 48 (1996), 527–541 | DOI | MR | Zbl

[35] S.-K. Chua, “Sobolev interpolation inequalities on generalized John domains”, Pacific J. Math., 242 (2009), 215–258 | DOI | MR | Zbl

[36] R.R. Coifman, C. Fefferman, “Weighted norm inequalities for maximal functions and singular integrals”, Studia Math., 51 (1974), 241–250 | MR | Zbl

[37] B. Dahlberg, “A minimum principle for positive harmonic functions”, Proc. London Math. Soc. (3), 33 (1976), 238–250 | DOI | MR | Zbl

[38] L. Diening, M. Růžička, K. Schumacher, “A decomposition technique for John domains”, Ann. Acad. Sci. Fenn. Math., 35 (2010), 87–114 | DOI | MR | Zbl

[39] N.F. Dudley-Ward, “On a decomposition theorem for continuous functions of Hayman and Lyons”, N.J.Z. Math., 22 (1993), 49–59 | MR | Zbl

[40] R.G. Durán, M. Sanmartino, M. Toschi, “Weighted a priori estimates for the Poisson equation”, Indiana Univ. Math. J., 57 (2008), 3463–3478 | DOI | MR | Zbl

[41] R.G. Durán, M. Sanmartino, M. Toschi, “Weighted a priori estimates for solution of $(-\Delta)^mu=f$ with homogeneous Dirichlet conditions”, Anal. Theory Appl., 26 (2010), 339–349 | DOI | MR | Zbl

[42] E.B. Fabes, C.E. Kenig, R.P. Serapioni, “The local regularity of solutions of degenerate elliptic equations”, Comm. Part. Diff. Eq., 7 (1982), 77–116 | DOI | MR | Zbl

[43] R. Farwig, R. Myong-Hwan, “Resolvent estimates and maximal regularity in weighted $L^q$-spaces of the Stokes operator in an infinite cylinder”, J. Math. Fluid Mech., 10 (2008), 352–387 | DOI | MR | Zbl

[44] R. Farwig, H. Sohr, “Weighted $L^q$-theory for the Stokes resolvent in exterior domains”, J. Math. Soc. Japan, 49 (1997), 251–288 | DOI | MR | Zbl

[45] L. Frerick, J. Müller, “Polynomial approximation on compact sets bounded by Dini-smooth arcs”, Comput. Methods Funct. Theory, 3 (2003), 273–284 | MR | Zbl

[46] S.J. Fromm, “Potential space estimates for Green potentials in convex domains”, Proc. Amer. Math. Soc., 119 (1993), 225–233 | DOI | MR

[47] S.J. Gardiner, “Boundary behaviour of holomorphic and harmonic functions”, Irish Math. Soc. Bull., 29 (1992), 19–30 | MR | Zbl

[48] S.J. Gardiner, “Superharmonic extension from the boundary of a domain”, Bull. London Math. Soc., 27 (1995), 347–352 | DOI | MR | Zbl

[49] S.J. Gardiner, A. Gustafsson, “Smooth potentials with prescribed boundary behaviour”, Publ. Mat. Barc., 48 (2004), 241–249 | MR | Zbl

[50] G. Geymonat, P. Grisvard, “Problemi ai limiti lineari ellittici negli spazi di Sobolev con peso”, Le Matematiche, 22 (1967), 212–249 | MR | Zbl

[51] M. Götz, “A discrepancy theorem in $\mathbb R^d$, $d\geq3$”, Analysis (Munich), 20 (2000), 303–323 | MR

[52] C. Goudjo, “Problèmes aux limites dans les espaces de Sobolev avec poids”, Bollettino U.M.I. (4), 8 (1973), 468–493 | MR | Zbl

[53] A. Grigor'yan, L. Saloff-Coste, “Stability results for Harnack inequalities”, Ann. Inst. Fourier (Grenoble), 55 (2005), 825–890 | DOI | MR

[54] P. Gurka, B. Opic, “Continuous and compact imbeddings of weighted Sobolev spaces. I”, Czechoslovak Math. J., 38 (1988), 730–744 | MR | Zbl

[55] W. Hansen, I. Netuka, “Volume densities with the mean value property for harmonic functions”, Proc. Amer. Math. Soc., 123 (1995), 135–140 | DOI | MR | Zbl

[56] D.D. Haroske, I. Piotrowska, “Atomic decompositions of function spaces with Muckenhoupt weights, and some relation to fractal analysis”, Math. Nachr., 281 (2008), 1476–1494 | DOI | MR | Zbl

[57] L.I. Hedberg, Yu. Netrusov, An Axiomatic Approach to Function Spaces, Spectral Synthesis, and Luzin Approximation, Mem. Amer. Math. Soc., 188, 2007 | MR

[58] K. Hirata, “Boundary behaviour of quotients of Martin kernels”, Proc. Edinb. Math. Soc. (2), 50 (2007), 377–388 | DOI | MR | Zbl

[59] S. Hofmann, M. Mitrea, M. Taylor, “Singular integrals and elliptic boundary problems on regular Semmes-Kenig-Toro domains”, Int. Math. Res. Not., 2010 (2010), 2567–2865 | MR | Zbl

[60] T. Jakab, I. Mitrea, M. Mitrea, “Sobolev estimates for the Green potential associated with the Robin-Laplacian in Lipschitz domains satisfying a uniform exterior ball condition”, Sobolev Spaces in Mathematics. II, Int. Math. Ser. (N. Y.), 9, Springer, New York; Tamara Rozhkovskaya Publisher, Novosibirsk, 2009, 227–260 | DOI | MR | Zbl

[61] D.S. Jerison, C.E. Kenig, “Boundary behavior of harmonic functions in non-tangentially accessible domains”, Adv. Math., 46 (1982), 80–147 | DOI | MR | Zbl

[62] A. Jonsson, P. Sjögren, H. Wallin, “Hardy and Lipschitz spaces on subsets of $\mathbf R^n$”, Studia Math., 80 (1984), 141–166 | MR | Zbl

[63] V. Kozlov, “Asymptotic representation of solutions to the Dirichlet problem for elliptic systems with discontinuous coefficients near the boundary”, Electron. J. Diff. Equ., 2006 (2006), 1–46 | MR

[64] V. Kozlov, V. Maz'ya, “Asymptotic formula for solutions to elliptic equations near the Lipschitz boundary”, Ann. Mat. Pura Appl. (4), 184 (2005), 185–213 | DOI | MR | Zbl

[65] V.A. Kozlov, V.G. Maz'ya, J. Rossman, Elliptic Boundary Value Problems in Domains with Point Singularities, Math. Surv. Monographs, 52, Amer. Math. Soc., Providence, 1997 | MR | Zbl

[66] I. Kukavica, K. Nyström, “Unique continuation on the boundary for Dini domains”, Proc. Amer. Math. Soc., 126 (1998), 441–446 | DOI | MR | Zbl

[67] D.S. Kurtz, R.L. Wheeden, “Results on weighted norm inequalities for multipliers”, Trans. Amer. Math. Soc., 255 (1979), 343–362 | DOI | MR | Zbl

[68] P.-G. Lemarié-Rieusset, “Ondelettes et poids de Muckenhoupt”, Studia Math., 108 (1994), 127–147 | MR | Zbl

[69] G.M. Lieberman, “Regularized distance and its applications”, Pacific J. Math., 117 (1985), 329–352 | MR | Zbl

[70] G.M. Lieberman, “The Dirichlet problem with $L^p$ boundary data in domains with Dini continuous normal”, Tsukuba J. Math., 15 (1991), 41–56 | MR | Zbl

[71] T. Lundh, “Minimally thin sets below a function graph”, Complex Var. Theory Appl., 49 (2004), 639–645 | MR | Zbl

[72] V.G. Maz'ya, T.O. Shaposhnikova, Theory of Sobolev Multipliers. With Applications to Differential and Integral Operators, Springer, Berlin-Heidelberg, 2009 | MR

[73] N. Miller, “Weighted Sobolev spaces and pseudodifferential operators with smooth symbols”, Trans. Amer. Math. Soc., 269 (1982), 91–109 | DOI | MR | Zbl

[74] A.I. Nazarov, A centennial of the Zaremba-Hopf-Oleinik lemma, preprint, 2010 | MR

[75] P.J. Rippon, “A generalisation of Widman's theorem on comparison domains for harmonic measures”, Ark. Mat., 17 (1979), 39–50 | DOI | MR | Zbl

[76] V.S. Rychkov, “Littlewood-Paley theory and function spaces with $A_p^{\mathrm{loc}}$ weights”, Math. Nachr., 224 (2001), 145–180 | 3.0.CO;2-2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[77] M.V. Safonov, Boundary estimates for positive solutions to second order elliptic equations, preprint, 2008

[78] E.T. Sawyer, R.L. Wheeden, Hölder Continuity of Weak Solutions to Subelliptic Equations with Rough Coefficients, Mem. Amer. Math. Soc., 847, 2006 | MR | Zbl

[79] K. Schumacher, The Navier-Stokes Equations with Low-Regularity Data in Weighted Function Spaces, Dissertation, TU Darmstadt, 2007

[80] P. Sjögren, “Une propriété des fonctions harmoniques positives, d'après Dahlberg”, Séminaire de Théorie du Potentiel de Paris, no. 2 (Univ. Paris, Paris, 1975–1976), Lect. Notes Math., 563, Springer, Berlin, 1976, 275–282 | DOI | MR

[81] E.M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Univ. Press, Princeton, 1993 | MR | Zbl

[82] R.S. Strichartz, “Bounded mean oscillation and Sobolev spaces”, Undiana Univ. Math. J., 29 (1980), 539–558 | DOI | MR | Zbl

[83] X. Tao, “Doubling properties and unique continuation at the boundary for elliptic operators with singular magnetic fields”, Studia Math., 151 (2002), 31–48 | DOI | MR | Zbl

[84] X. Tao, S. Zhang, “On doubling properties and the unique continuation at the boundary in Dini domains”, Approx. Theory Appl., 17 (2001), 1–9 | MR | Zbl

[85] X. Tao, S. Zhang, “Unique continuation at the boundary for elliptic operators in Dini domains”, Southeast Asian Bull. Math., 26 (2002), 523–534 | DOI | MR | Zbl

[86] L. Tartar, An Introduction to Sobolev Spaces and Interpolation Spaces, Springer, Berlin-Heidelberg, 2007 | MR

[87] H. Triebel, Theory of Function Spaces. II, Monographs Math., 84, Birkhäuser Verlag, Basel, 1992 | MR | Zbl

[88] B.O. Turesson, Nonlinear Potential Theory and Weighted Sobolev Spaces, Lect. Notes Math., 1736, Springer, Berlin, 2000 | DOI | MR | Zbl

[89] I.E. Verbitsky, “Superlinear equations, potential theory and weighted norm inequalities”, Nonlinear analysis, function spaces and applications, Acad. Sci. Czech Repub., 6, Prague, 1998, 223–269 | MR

[90] H. Wallin, “New and old function spaces”, Function Spaces and Applications, Proc. Conf. Lund 1986, Lect. Notes Math., 1302, Springer, Berlin, 1988, 99–114 | DOI | MR

[91] W. Wang, “A remark on gradients of harmonic functions”, Rev. Mat. Iberoamericana, 11 (1995), 227–245 | DOI | MR | Zbl

[92] K.-O. Widman, “Inequalities for the Green's function and boundary continuity of the gradient of solutions of elliptic differential equations”, Math. Scand., 21 (1967), 17–37 | MR | Zbl

[93] K.-O. Widman, “On the boundary behavior of solutions to a class of elliptic partial differential equations”, Ark. Math., 6 (1967), 485–533 | DOI | MR | Zbl

[94] J.G. Wu, “Subharmonic functions in $C^{1+\alpha}$ domains”, Indiana Univ. Math. J., 33 (1984), 89–116 | DOI | MR | Zbl

[95] R.L. Zeinstra, “Some properties of positive superharmonic functions”, Compos. Math., 72 (1989), 115–120 | MR | Zbl