Fine and Wilf’s theorem for permutations
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 9 (2012), pp. 377-381 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We try to extend to permutations the famous Fine and Wilf’s theorem valid for words and see that it is possible to do it only partially: the theorem is valid for coprime periods, but if the periods are not coprime, there is another statement valid instead.
Keywords: Fine and Wilf’s theorem, periodicity
Mots-clés : permutations, infinite permutations.
@article{SEMR_2012_9_a21,
     author = {A. \`E. Frid},
     title = {Fine and {Wilf{\textquoteright}s} theorem for permutations},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {377--381},
     year = {2012},
     volume = {9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2012_9_a21/}
}
TY  - JOUR
AU  - A. È. Frid
TI  - Fine and Wilf’s theorem for permutations
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2012
SP  - 377
EP  - 381
VL  - 9
UR  - http://geodesic.mathdoc.fr/item/SEMR_2012_9_a21/
LA  - en
ID  - SEMR_2012_9_a21
ER  - 
%0 Journal Article
%A A. È. Frid
%T Fine and Wilf’s theorem for permutations
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2012
%P 377-381
%V 9
%U http://geodesic.mathdoc.fr/item/SEMR_2012_9_a21/
%G en
%F SEMR_2012_9_a21
A. È. Frid. Fine and Wilf’s theorem for permutations. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 9 (2012), pp. 377-381. http://geodesic.mathdoc.fr/item/SEMR_2012_9_a21/

[1] S. Avgustinovich, A. Frid, T. Kamae, P. Salimov, “Infinite permutations of lowest maximal pattern complexity”, Theoret. Comput. Sci., 412 (2011), 2911–2921 | DOI | MR | Zbl

[2] N. J. Fine and H. S. Wilf, “Uniqueness theorems for periodic functions”, Proc. Amer. Math. Soc., 16 (1965), 109–114 | DOI | MR | Zbl

[3] D. G. Fon-Der-Flaass, A. E. Frid, “On periodicity and low complexity of infinite permutations”, European J. Combin., 28 (2007), 2106–2114 | DOI | MR | Zbl

[4] A. Frid and L. Zamboni, “On automatic infinite permutations”, Theoret. Inf. Appl., 46 (2012), 77–85 | DOI | MR | Zbl

[5] M. Lothaire, Combinatorics on words, Addison-Wesley Publishing Co., 1983 | MR | Zbl

[6] M. A. Makarov, “On permutations generated by infinite binary words”, Sib. Electron. Mat. Izv., 3 (2006), 304–311, [in Russian, English abstract] | MR | Zbl

[7] J. O. Shallit, 50 Years of Fine and Wilf, invited talk at University of Turku, Finland, November 2011; slides available at http://www.cs.uwaterloo.ca/~shallit/Talks/wilf5.pdf