Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2012_9_a20, author = {M. A. Makarov}, title = {Antimonotone permutations}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {346--359}, publisher = {mathdoc}, volume = {9}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2012_9_a20/} }
M. A. Makarov. Antimonotone permutations. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 9 (2012), pp. 346-359. http://geodesic.mathdoc.fr/item/SEMR_2012_9_a20/
[1] S. Avgustinovich, J. Cassaigne, A. Frid, “Sequences of low arithmetical complexity”, Theoretical Informatics and Applications, 40 (2006), 569–582 | DOI | MR | Zbl
[2] S. Avgustinovich, D. Fon-Der-Flaass, A. Frid, “Arithmetical complexity of infinite words”, Words, Languages Combinatorics III, World Scientific Publishing, 2003, 51–62 | DOI | MR
[3] S. Avgustinovich, A. Frid, T. Kamae, P. Salimov, “Infinite permutations of lowest maximal pattern complexity”, Theoretical Computer Science, 412 (2011), 2911–2921 | DOI | MR | Zbl
[4] J. Cassaigne, “On a conjecture of J. Shallit”, Proceedings of the 24th International Colloquium on Automata, Languages and Programming, Lecture Notes in Computer Science, 1256, Springer, Bologna, 1997, 693–784 | DOI | MR
[5] J. Cassaigne, A. Frid, “On arithmetical complexity of Sturmian words”, Theoretical Computer Science, 380 (2007), 304–316 | DOI | MR | Zbl
[6] J. Davis, R. Entringer, R. Graham, G. Simmons, “On permutations containing no long arithmetic progressions”, Acta Arithmetica, 34 (1977), 81–90 | MR | Zbl
[7] D. Fon-Der-Flaass, A. Frid, “On periodicity and low complexity of infinite permutations”, 2005 European Conference on Combinatorics, Graph Theory and Applications (EuroComb'05), Discrete Mathematics and Theoretical Computer Science Proceedings volume AE, 267–272 | Zbl
[8] D. Fon-Der-Flaass, A. Frid, “On periodicity and low complexity of infinite permutations”, European Journal of Combinatorics, 28 (2007), 2106–2114 | DOI | MR | Zbl
[9] A. Frid, “Arithmetical complexity of symmetric D0L words”, Theoretical Computer Science, 306 (2003), 535–542 | DOI | MR | Zbl
[10] A. Frid, “Infinite permutations vs. infinite words”, Electronic Proceedings in Theoretical Computer Science, 63 (2011), 13–19 | DOI
[11] A. Frid, “On possible growths of arithmetical complexity”, Theoretical Informatics and Applications, 40 (2006), 443–458 | DOI | MR | Zbl
[12] A. Frid, “Sequences of linear arithmetical complexity”, Theoretical Computer Science, 339 (2005), 68–87 | DOI | MR | Zbl
[13] A. Frid, L. Zamboni, “On automatic infinite permutations”, RAIRO Theoretical Informatics and Applications, 46 (2012), 77–85 | DOI | MR | Zbl
[14] N. Gjini, T. Kamae, Bo Tan, Yu-Mei Xue, “Maximal pattern complexity for Toeplitz words”, Ergodic Theory and Dynamical Systems, 26 (2006), 1073–1086 | DOI | MR | Zbl
[15] T. LeSaulnier, S. Vijay, “On permutations avoiding arithmetic progressions”, Discrete Mathematics, 311 (2011), 205–207 | DOI | MR | Zbl
[16] M. Makarov, “On an infinite permutation similar to the Thue-Morse word”, Discrete Mathematics, 309 (2009), 6641–6643 | DOI | MR | Zbl
[17] M. Makarov, “On the infinite permutation generated by the period doubling word”, European Journal of Combinatorics, 31 (2010), 368–378 | DOI | MR | Zbl
[18] T. Kamae, “Behavior of various complexity functions”, Theoretical Computer Science, 420 (2012), 36–47 | DOI | MR | Zbl
[19] T. Kamae, H. Rao, “Maximal pattern complexity of words over $\ell$ letters”, European Journal of Combinatorics, 27 (2006), 125–137 | DOI | MR | Zbl
[20] T. Kamae, H. Rao, Bo Tan, Yu-Mei Xue, “Language structure of pattern Sturmian word”, Discrete Mathematics, 306 (2006), 1651–1668 | DOI | MR | Zbl
[21] T. Kamae, H. Rao, Yu-Mei Xue, “Maximal pattern complexity of two-dimensional words”, Theoretical Computer Science, 359 (2006), 15–27 | DOI | MR | Zbl
[22] T. Kamae, P. Salimov, “On maximal pattern complexity of some automatic words”, Ergodic Theory and Dynamical Systems, 31 (2011), 1463–1470 | DOI | MR | Zbl
[23] T. Kamae, L. Zamboni, “Maximal pattern complexity for discrete systems”, Ergodic Theory and Dynamical Systems, 22 (2002), 1201–1214 | MR | Zbl
[24] T. Kamae, L. Zamboni, “Sequence entropy and the maximal pattern complexity of infinite words”, Ergodic Theory and Dynamical Systems, 22 (2002)), 1191–1199 | MR | Zbl
[25] G. Rauzy, “Suites à termes dans un alphabet fini”, Séminaire de Théorie des nombres de Bordeaux, exposé 25, 1983, 2501–2516 | MR
[26] M. Makarov, “O perestanovkakh, porozhdennykh beskonechnymi binarnymi slovami”, Sibirskie elektronnye matematicheskie izvestiya, 3 (2006), 304–311 | MR
[27] M. Makarov, “O perestanovkakh, porozhdennykh slovami Shturma”, Sibirskii matematicheskii zhurnal, 50 (2009), 850–857 | Zbl
[28] A. Frid, “Nizhnyaya otsenka na arifmeticheskuyu slozhnost slov Shturma”, Sibirskie elektronnye matematicheskie izvestiya, 2 (2005), 14–22