Antimonotone permutations
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 9 (2012), pp. 346-359

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is devoted to a class of infinite permutations. One of the properties of these permutations is their avoiding monotone subsequences of elements with numbers forming an arithmetical progression of length 3. We find the complexity of these permutations, their Rauzy graphs, their maximal pattern complexity, their arithmetical complexity with odd differences, and also we find the lower and upper bounds for their arithmetical complexity and show that these bounds are attained.
Mots-clés : infinite permutations
Keywords: combinatorics on words, Rauzy graphs, maximal pattern complexity, arithmetical complexity.
@article{SEMR_2012_9_a20,
     author = {M. A. Makarov},
     title = {Antimonotone permutations},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {346--359},
     publisher = {mathdoc},
     volume = {9},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2012_9_a20/}
}
TY  - JOUR
AU  - M. A. Makarov
TI  - Antimonotone permutations
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2012
SP  - 346
EP  - 359
VL  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2012_9_a20/
LA  - ru
ID  - SEMR_2012_9_a20
ER  - 
%0 Journal Article
%A M. A. Makarov
%T Antimonotone permutations
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2012
%P 346-359
%V 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2012_9_a20/
%G ru
%F SEMR_2012_9_a20
M. A. Makarov. Antimonotone permutations. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 9 (2012), pp. 346-359. http://geodesic.mathdoc.fr/item/SEMR_2012_9_a20/