Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2012_9_a18, author = {Tommy Jensen}, title = {Simple algorithm for finding a second {Hamilton} cycle}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {151--155}, publisher = {mathdoc}, volume = {9}, year = {2012}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2012_9_a18/} }
Tommy Jensen. Simple algorithm for finding a second Hamilton cycle. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 9 (2012), pp. 151-155. http://geodesic.mathdoc.fr/item/SEMR_2012_9_a18/
[1] J.A. Bondy, “Basic Graph Theory: Paths and Cycles”, Handbook of Combinatorics, eds. Graham, R., Grötschel, M., Lovász, L., Elsevier Science B.V., 1995 | MR | Zbl
[2] K. Cameron, “Krawczyk's graphs show Thomason's algorithm for finding a second Hamilton cycle through a given edge in a cubic graph is exponential”, Fifth Czech-Slovak Symposium on Combinatorics, Graph Theory, Algorithms and Applications, Prague, SIAM Conference on Discrete Mathematics, Toronto; July 1998
[3] M. Chrobak, S. Poljak, “On common edges in optimal solutions to traveling salesman and other optimization problems”, Discrete Appl. Math., 20 (1988), 101–111 | DOI | MR | Zbl
[4] A. Krawczyk, “The Complexity of Finding a Second Hamiltonian Cycle in Cubic Graphs”, J. Comput. Syst. Sci., 58:3 (1999), 641–647 | DOI | MR | Zbl
[5] C.H. Papadimitriou, “On the Complexity of the Parity Argument and Other Inefficient Proofs of Existence”, J. Comput. Syst. Sci., 48:3 (1994), 498–532 | DOI | MR | Zbl
[6] A.G. Thomason, “Hamilton cycles and uniquely edge-colourable graphs”, Ann. of Discrete Math., 3 (1978), 259–268 | DOI | MR | Zbl
[7] W.T. Tutte, “On Hamilton circuits”, J. London Math. Soc., 21 (1946), 98–101 | DOI | MR | Zbl