On Morse theory for manifolds with cross products
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 9 (2012), pp. 456-459.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the finite-dimensional Morse theory for closed Riemannian manifolds equipped with the vector cross product on the tangent bundle. These are, for example, $G_2$-manifolds. Under some conditions toric actions generate the Morse–Bott function, whose gradient trajectories are explicit. This allows us to construct the Morse–Bott complex and calculate the real cohomology ring of the manifold.
Keywords: Morse theory, toric action.
@article{SEMR_2012_9_a14,
     author = {D. V. Egorov},
     title = {On {Morse} theory for manifolds with cross products},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {456--459},
     publisher = {mathdoc},
     volume = {9},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2012_9_a14/}
}
TY  - JOUR
AU  - D. V. Egorov
TI  - On Morse theory for manifolds with cross products
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2012
SP  - 456
EP  - 459
VL  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2012_9_a14/
LA  - en
ID  - SEMR_2012_9_a14
ER  - 
%0 Journal Article
%A D. V. Egorov
%T On Morse theory for manifolds with cross products
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2012
%P 456-459
%V 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2012_9_a14/
%G en
%F SEMR_2012_9_a14
D. V. Egorov. On Morse theory for manifolds with cross products. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 9 (2012), pp. 456-459. http://geodesic.mathdoc.fr/item/SEMR_2012_9_a14/

[1] T. Frankel, “Fixed points and torsion on Kähler manifold”, Ann. of Math., 70:1 (1959), 1–8 | DOI | MR | Zbl

[2] R. Bott, “The stable homotopy of the classical groups”, Ann. of Math., 70:2 (1959), 313–337 | DOI | MR | Zbl

[3] D.M. Austin, P.J. Braam, “Morse–Bott theory and equivariant cohomology”, The Floer Memorial Volume, Progress in Math., 133, eds. H. Hofer, C.H. Taubes, A. Weinstein and E. Zehnder, Birkhäuser, 1995, 123–183 | MR | Zbl

[4] S. Bochner, “Vector fields and Ricci curvature”, Bull. AMS, 52 (1946), 776–797 | DOI | MR | Zbl