Brahmagupta formula for cyclic quadrilaterals in the hyperbolic plane
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 9 (2012), pp. 247-255

Voir la notice de l'article provenant de la source Math-Net.Ru

The Heron formula relates the area of an Euclidean triangle to its side lengths. Indian mathematician and astronomer Brahmagupta, in the seventh century, gave the analogous formulas for a convex cyclic quadrilateral. Several non-Euclidean versions of the Heron theorem have been known for a long time. In this paper we consider a convex hyperbolic quadrilateral inscribed in a circle, horocycle or one branch of an equidistant curve. This is a natural hyperbolic analog of the cyclic quadrilateral in the Euclidean plane. We find a few versions of the Brahmahupta formula for such quadrilaterals.
Keywords: Brahmagupta formula, hyperbolic quadrilateral.
Mots-clés : Heron formula, cyclic polygon
@article{SEMR_2012_9_a12,
     author = {A. D. Mednykh},
     title = {Brahmagupta formula for cyclic quadrilaterals in the hyperbolic plane},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {247--255},
     publisher = {mathdoc},
     volume = {9},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2012_9_a12/}
}
TY  - JOUR
AU  - A. D. Mednykh
TI  - Brahmagupta formula for cyclic quadrilaterals in the hyperbolic plane
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2012
SP  - 247
EP  - 255
VL  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2012_9_a12/
LA  - en
ID  - SEMR_2012_9_a12
ER  - 
%0 Journal Article
%A A. D. Mednykh
%T Brahmagupta formula for cyclic quadrilaterals in the hyperbolic plane
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2012
%P 247-255
%V 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2012_9_a12/
%G en
%F SEMR_2012_9_a12
A. D. Mednykh. Brahmagupta formula for cyclic quadrilaterals in the hyperbolic plane. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 9 (2012), pp. 247-255. http://geodesic.mathdoc.fr/item/SEMR_2012_9_a12/