Brahmagupta formula for cyclic quadrilaterals in the hyperbolic plane
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 9 (2012), pp. 247-255.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Heron formula relates the area of an Euclidean triangle to its side lengths. Indian mathematician and astronomer Brahmagupta, in the seventh century, gave the analogous formulas for a convex cyclic quadrilateral. Several non-Euclidean versions of the Heron theorem have been known for a long time. In this paper we consider a convex hyperbolic quadrilateral inscribed in a circle, horocycle or one branch of an equidistant curve. This is a natural hyperbolic analog of the cyclic quadrilateral in the Euclidean plane. We find a few versions of the Brahmahupta formula for such quadrilaterals.
Keywords: Brahmagupta formula, hyperbolic quadrilateral.
Mots-clés : Heron formula, cyclic polygon
@article{SEMR_2012_9_a12,
     author = {A. D. Mednykh},
     title = {Brahmagupta formula for cyclic quadrilaterals in the hyperbolic plane},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {247--255},
     publisher = {mathdoc},
     volume = {9},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2012_9_a12/}
}
TY  - JOUR
AU  - A. D. Mednykh
TI  - Brahmagupta formula for cyclic quadrilaterals in the hyperbolic plane
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2012
SP  - 247
EP  - 255
VL  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2012_9_a12/
LA  - en
ID  - SEMR_2012_9_a12
ER  - 
%0 Journal Article
%A A. D. Mednykh
%T Brahmagupta formula for cyclic quadrilaterals in the hyperbolic plane
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2012
%P 247-255
%V 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2012_9_a12/
%G en
%F SEMR_2012_9_a12
A. D. Mednykh. Brahmagupta formula for cyclic quadrilaterals in the hyperbolic plane. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 9 (2012), pp. 247-255. http://geodesic.mathdoc.fr/item/SEMR_2012_9_a12/

[1] Ya. P. Ponarin, Elementarnaya geometriya, v. 1, Planimetriya, MTsNMO, M., 2004

[2] I. Kh. Sabitov, “A generalized Heron–Tartaglia formula and some of its consequences”, Sb. Math., 189:10 (1998), 1533–1561 | DOI | MR | Zbl

[3] I. Kh. Sabitov, “Reshenie tsiklicheskikh mnogougolnikov”, Matematicheskoe prosveschenie. Tretya seriya, 2010, no. 14, 149–154

[4] J. L. Coolidge, The Elements of non-Euclidean Geometry, Clarendon Press, Oxford, 1909

[5] I. Todhunter, Spherical Trigonometry, Macmillan and Co., London, 1886

[6] V. V. Prasolov, Geometriya Lobachevskogo, 3-e izd., MTsNMO, M., 2004

[7] E.B. Vinberg et al., Geometry, v. 2, Encyclopaedia of Mathematical Sciences, 29, Springer-Verlag, 1993 | MR | Zbl

[8] S. Bilinski, “Zur Begründung der elementaren Inhaltslehre in der hyperbolischen Ebene”, Math. Ann., 180 (1969), 256–268 | DOI | MR | Zbl

[9] R. Walter, Polygons in hyperbolic geometry 1: Rigidity and inversion of the $n-$inequality, arXiv: 1008.3404v1 [math.MG]

[10] R. Walter, Polygons in hyperbolic geometry 2: Maximality of area, arXiv: 1008.3821v1 [math.MG]

[11] V. F. Ivanoff, “Solution to Problem E1376: Bretschneider's Formula”, Amer. Math. Monthly, 67 (1960), 291–292 | DOI | MR

[12] F. V. Petrov, “Vpisannye chetyrekhugolniki i trapetsii v absolyutnoi geometrii”, Matematicheskoe prosveschenie. Tretya seriya, 2009, no. 13, 149–154

[13] W. Lienhard, “Cyclic polygons in non-Euclidean geometry”, Elem. math., 66:2 (2011), 74–82 | MR | Zbl

[14] W. J. M'Clelland, T. Preston, A Treatise on Spherical Trigonometry with application to Spherical Geometry and Numerous Examples, Part II, Macmillian and So., London, 1886

[15] J. E. Valentine, “An analogue of Ptolemy's theorem and its converse in hyperbolic geometry”, Pacific J. Math., 34 (1970), 817–825 | MR | Zbl

[16] Ren Guo and Nilgün Sönmez, “Cyclic polygons in classical geometry”, Comptes rendus de l' Academie bulgare des Sciences, 64:2 (2011), 185–194 ; arXiv: 1009.2970v1 [math.MG] | MR

[17] W. Dickinson and M. Salmassi, “The Right Right Triangle on the Sphere”, The College Mathematics Journal, 39:1 (2008), 24–33 | MR

[18] H. S. M. Coxeter and S. L. Greitzer, Geometry Revisited, The Mathematical Association of America, 1967

[19] R. Connelly, “Comments on generalized Heron polynomials and Robbins’ conjectures”, Discrete Mathematics, 309:12 (2009), 4192–4196 | DOI | MR | Zbl

[20] M. Fedorchuk and I. Pak, “Rigidity and polynomial invariants of convex polytopes”, Duke Math. J., 129:2 (2005), 371–404 | DOI | MR | Zbl

[21] A. F. Möbius, “Ueber die Gleichungen, mittelst welcher aus den Seiten eines in einen Kreis zu beschreibenden Vielecks der Halbmesser des Kreises und die Fläche des Vielecks gefunden werden”, Crelle’s Journal, 35 (1828), 5–34 | DOI

[22] D. P. Robbins, “Areas of polygons inscribed in a circle”, Discrete and Computational Geometry, 12 (1994), 223–236 | DOI | MR | Zbl

[23] V. V. Varfolomeev, “Inscribed polygons and Heron polynomials”, Sb. Math., 194:3 (2003), 311–331 | DOI | MR | Zbl

[24] A. A. Gaifullin, Sabitov polynomials for polyhedra in four dimensions http://lanl.arxiv.org/abs/1108.6014v1