Brahmagupta formula for cyclic quadrilaterals in the hyperbolic plane
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 9 (2012), pp. 247-255
Voir la notice de l'article provenant de la source Math-Net.Ru
The Heron formula relates the area of an Euclidean triangle to its side lengths. Indian mathematician and astronomer Brahmagupta, in the seventh century, gave the analogous formulas for a convex cyclic quadrilateral. Several non-Euclidean versions of the Heron theorem have been known for a long time.
In this paper we consider a convex hyperbolic quadrilateral inscribed in a circle, horocycle or one branch of an equidistant curve. This is a natural hyperbolic analog of the cyclic quadrilateral in the Euclidean plane. We find a few versions of the Brahmahupta formula for such quadrilaterals.
Keywords:
Brahmagupta formula, hyperbolic quadrilateral.
Mots-clés : Heron formula, cyclic polygon
Mots-clés : Heron formula, cyclic polygon
@article{SEMR_2012_9_a12,
author = {A. D. Mednykh},
title = {Brahmagupta formula for cyclic quadrilaterals in the hyperbolic plane},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {247--255},
publisher = {mathdoc},
volume = {9},
year = {2012},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SEMR_2012_9_a12/}
}
A. D. Mednykh. Brahmagupta formula for cyclic quadrilaterals in the hyperbolic plane. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 9 (2012), pp. 247-255. http://geodesic.mathdoc.fr/item/SEMR_2012_9_a12/