Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2012_9_a12, author = {A. D. Mednykh}, title = {Brahmagupta formula for cyclic quadrilaterals in the hyperbolic plane}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {247--255}, publisher = {mathdoc}, volume = {9}, year = {2012}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2012_9_a12/} }
A. D. Mednykh. Brahmagupta formula for cyclic quadrilaterals in the hyperbolic plane. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 9 (2012), pp. 247-255. http://geodesic.mathdoc.fr/item/SEMR_2012_9_a12/
[1] Ya. P. Ponarin, Elementarnaya geometriya, v. 1, Planimetriya, MTsNMO, M., 2004
[2] I. Kh. Sabitov, “A generalized Heron–Tartaglia formula and some of its consequences”, Sb. Math., 189:10 (1998), 1533–1561 | DOI | MR | Zbl
[3] I. Kh. Sabitov, “Reshenie tsiklicheskikh mnogougolnikov”, Matematicheskoe prosveschenie. Tretya seriya, 2010, no. 14, 149–154
[4] J. L. Coolidge, The Elements of non-Euclidean Geometry, Clarendon Press, Oxford, 1909
[5] I. Todhunter, Spherical Trigonometry, Macmillan and Co., London, 1886
[6] V. V. Prasolov, Geometriya Lobachevskogo, 3-e izd., MTsNMO, M., 2004
[7] E.B. Vinberg et al., Geometry, v. 2, Encyclopaedia of Mathematical Sciences, 29, Springer-Verlag, 1993 | MR | Zbl
[8] S. Bilinski, “Zur Begründung der elementaren Inhaltslehre in der hyperbolischen Ebene”, Math. Ann., 180 (1969), 256–268 | DOI | MR | Zbl
[9] R. Walter, Polygons in hyperbolic geometry 1: Rigidity and inversion of the $n-$inequality, arXiv: 1008.3404v1 [math.MG]
[10] R. Walter, Polygons in hyperbolic geometry 2: Maximality of area, arXiv: 1008.3821v1 [math.MG]
[11] V. F. Ivanoff, “Solution to Problem E1376: Bretschneider's Formula”, Amer. Math. Monthly, 67 (1960), 291–292 | DOI | MR
[12] F. V. Petrov, “Vpisannye chetyrekhugolniki i trapetsii v absolyutnoi geometrii”, Matematicheskoe prosveschenie. Tretya seriya, 2009, no. 13, 149–154
[13] W. Lienhard, “Cyclic polygons in non-Euclidean geometry”, Elem. math., 66:2 (2011), 74–82 | MR | Zbl
[14] W. J. M'Clelland, T. Preston, A Treatise on Spherical Trigonometry with application to Spherical Geometry and Numerous Examples, Part II, Macmillian and So., London, 1886
[15] J. E. Valentine, “An analogue of Ptolemy's theorem and its converse in hyperbolic geometry”, Pacific J. Math., 34 (1970), 817–825 | MR | Zbl
[16] Ren Guo and Nilgün Sönmez, “Cyclic polygons in classical geometry”, Comptes rendus de l' Academie bulgare des Sciences, 64:2 (2011), 185–194 ; arXiv: 1009.2970v1 [math.MG] | MR
[17] W. Dickinson and M. Salmassi, “The Right Right Triangle on the Sphere”, The College Mathematics Journal, 39:1 (2008), 24–33 | MR
[18] H. S. M. Coxeter and S. L. Greitzer, Geometry Revisited, The Mathematical Association of America, 1967
[19] R. Connelly, “Comments on generalized Heron polynomials and Robbins’ conjectures”, Discrete Mathematics, 309:12 (2009), 4192–4196 | DOI | MR | Zbl
[20] M. Fedorchuk and I. Pak, “Rigidity and polynomial invariants of convex polytopes”, Duke Math. J., 129:2 (2005), 371–404 | DOI | MR | Zbl
[21] A. F. Möbius, “Ueber die Gleichungen, mittelst welcher aus den Seiten eines in einen Kreis zu beschreibenden Vielecks der Halbmesser des Kreises und die Fläche des Vielecks gefunden werden”, Crelle’s Journal, 35 (1828), 5–34 | DOI
[22] D. P. Robbins, “Areas of polygons inscribed in a circle”, Discrete and Computational Geometry, 12 (1994), 223–236 | DOI | MR | Zbl
[23] V. V. Varfolomeev, “Inscribed polygons and Heron polynomials”, Sb. Math., 194:3 (2003), 311–331 | DOI | MR | Zbl
[24] A. A. Gaifullin, Sabitov polynomials for polyhedra in four dimensions http://lanl.arxiv.org/abs/1108.6014v1