Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2012_9_a1, author = {K. A. Filippov}, title = {K.A. {Philippov}}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {185--189}, publisher = {mathdoc}, volume = {9}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2012_9_a1/} }
K. A. Filippov. K.A. Philippov. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 9 (2012), pp. 185-189. http://geodesic.mathdoc.fr/item/SEMR_2012_9_a1/
[1] S.I. Adyan, Problema Bernsaida i tozhdestva v gruppakh, Nauka, Moskva, 1975 | MR | Zbl
[2] E.I. Zelmanov, “Reshenie oslablennoi problemy bernsaida dlya $2$-grupp”, Matem. sb., 182:4 (1991), 568–592 | MR
[3] A.I. Kostrikin, “Reshenie oslablennoi problemy Bernsaida dlya pokazatelya $5$”, Izv. AN. SSSR. Ser. matem., 19:3 (1955), 233–244 | MR | Zbl
[4] I.G. Lysenok, “Beskonechnye bernsaidovy gruppy chetnogo perioda”, Izv. RAN. Ser. matem., 60:3 (1996), 3–224 | MR | Zbl
[5] G. Havas, G. Wall, J. Wamsley, “The two generator restricted Burnside group of exponent five”, Bull. Austral. Math. Soc., 10 (1974), 459–470 | DOI | MR | Zbl
[6] P. Hall, G. Higman, “On the $p$-length of $p$-soluble groups and reductions theorems for Burnside problem”, Proc. London Math. Soc., 6:3 (1956), 1–42 | DOI | MR | Zbl
[7] S.V. Ivanov, “The free Burnside groups of sufficiently large exponents”, Int. J. of Algebra and Computation, 4 (1994), 1–308 | DOI | MR | Zbl