K.A. Philippov
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 9 (2012), pp. 185-189.

Voir la notice de l'article provenant de la source Math-Net.Ru

Suppose $B_0(2,5)$ is a group of exponent 5 having two generators and maximal possible order. We prove that $Aut(G)$ acts fixed points freely on every factor of upper central series of the group $G$.
Keywords: Burnside problem.
@article{SEMR_2012_9_a1,
     author = {K. A. Filippov},
     title = {K.A. {Philippov}},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {185--189},
     publisher = {mathdoc},
     volume = {9},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2012_9_a1/}
}
TY  - JOUR
AU  - K. A. Filippov
TI  - K.A. Philippov
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2012
SP  - 185
EP  - 189
VL  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2012_9_a1/
LA  - ru
ID  - SEMR_2012_9_a1
ER  - 
%0 Journal Article
%A K. A. Filippov
%T K.A. Philippov
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2012
%P 185-189
%V 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2012_9_a1/
%G ru
%F SEMR_2012_9_a1
K. A. Filippov. K.A. Philippov. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 9 (2012), pp. 185-189. http://geodesic.mathdoc.fr/item/SEMR_2012_9_a1/

[1] S.I. Adyan, Problema Bernsaida i tozhdestva v gruppakh, Nauka, Moskva, 1975 | MR | Zbl

[2] E.I. Zelmanov, “Reshenie oslablennoi problemy bernsaida dlya $2$-grupp”, Matem. sb., 182:4 (1991), 568–592 | MR

[3] A.I. Kostrikin, “Reshenie oslablennoi problemy Bernsaida dlya pokazatelya $5$”, Izv. AN. SSSR. Ser. matem., 19:3 (1955), 233–244 | MR | Zbl

[4] I.G. Lysenok, “Beskonechnye bernsaidovy gruppy chetnogo perioda”, Izv. RAN. Ser. matem., 60:3 (1996), 3–224 | MR | Zbl

[5] G. Havas, G. Wall, J. Wamsley, “The two generator restricted Burnside group of exponent five”, Bull. Austral. Math. Soc., 10 (1974), 459–470 | DOI | MR | Zbl

[6] P. Hall, G. Higman, “On the $p$-length of $p$-soluble groups and reductions theorems for Burnside problem”, Proc. London Math. Soc., 6:3 (1956), 1–42 | DOI | MR | Zbl

[7] S.V. Ivanov, “The free Burnside groups of sufficiently large exponents”, Int. J. of Algebra and Computation, 4 (1994), 1–308 | DOI | MR | Zbl