Conditions for non-symmetric relations of semi-isolation
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 9 (2012), pp. 161-184
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider necessary and sufficient conditions for non-symmetric relations of semi-isolation in terms of colorings for neighborhoods of types, quasi-neighborhoods, and the existence of limit models. We show that, for any type $p$ in a small theory, its non-symmetry of isolation is equivalent to the non-symmetry of semi-isolation (where a realization $\bar a$ of $p$ isolates a realization $\bar b$ of $p$ and $\bar b$ does not semi-isolates $\bar a$) and is equivalent to the existence of a limit model over $p$. We generalize the Tsuboi theorem on the absence of Ehrenfeucht unions of pseudo-superstable theories and the Kim theorem on the absence of Ehrenfeucht supersimple theories for unions of pseudo-supersimple theories. We also present a survey of results related to non-symmetric semi-isolation.
Keywords:
relation of semi-isolation, $(p,q)$-preserving formula, Ehrenfeucht theory, powerful type, quasi-neighborhood, coloring of a structure, strict order property, limit model.
@article{SEMR_2012_9_a0,
author = {B. S. Baizhanov and S. V. Sudoplatov and V. V. Verbovskiy},
title = {Conditions for non-symmetric relations of semi-isolation},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {161--184},
publisher = {mathdoc},
volume = {9},
year = {2012},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SEMR_2012_9_a0/}
}
TY - JOUR AU - B. S. Baizhanov AU - S. V. Sudoplatov AU - V. V. Verbovskiy TI - Conditions for non-symmetric relations of semi-isolation JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2012 SP - 161 EP - 184 VL - 9 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2012_9_a0/ LA - en ID - SEMR_2012_9_a0 ER -
B. S. Baizhanov; S. V. Sudoplatov; V. V. Verbovskiy. Conditions for non-symmetric relations of semi-isolation. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 9 (2012), pp. 161-184. http://geodesic.mathdoc.fr/item/SEMR_2012_9_a0/