Conditions for non-symmetric relations of semi-isolation
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 9 (2012), pp. 161-184.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider necessary and sufficient conditions for non-symmetric relations of semi-isolation in terms of colorings for neighborhoods of types, quasi-neighborhoods, and the existence of limit models. We show that, for any type $p$ in a small theory, its non-symmetry of isolation is equivalent to the non-symmetry of semi-isolation (where a realization $\bar a$ of $p$ isolates a realization $\bar b$ of $p$ and $\bar b$ does not semi-isolates $\bar a$) and is equivalent to the existence of a limit model over $p$. We generalize the Tsuboi theorem on the absence of Ehrenfeucht unions of pseudo-superstable theories and the Kim theorem on the absence of Ehrenfeucht supersimple theories for unions of pseudo-supersimple theories. We also present a survey of results related to non-symmetric semi-isolation.
Keywords: relation of semi-isolation, $(p,q)$-preserving formula, Ehrenfeucht theory, powerful type, quasi-neighborhood, coloring of a structure, strict order property, limit model.
@article{SEMR_2012_9_a0,
     author = {B. S. Baizhanov and S. V. Sudoplatov and V. V. Verbovskiy},
     title = {Conditions for non-symmetric relations of semi-isolation},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {161--184},
     publisher = {mathdoc},
     volume = {9},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2012_9_a0/}
}
TY  - JOUR
AU  - B. S. Baizhanov
AU  - S. V. Sudoplatov
AU  - V. V. Verbovskiy
TI  - Conditions for non-symmetric relations of semi-isolation
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2012
SP  - 161
EP  - 184
VL  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2012_9_a0/
LA  - en
ID  - SEMR_2012_9_a0
ER  - 
%0 Journal Article
%A B. S. Baizhanov
%A S. V. Sudoplatov
%A V. V. Verbovskiy
%T Conditions for non-symmetric relations of semi-isolation
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2012
%P 161-184
%V 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2012_9_a0/
%G en
%F SEMR_2012_9_a0
B. S. Baizhanov; S. V. Sudoplatov; V. V. Verbovskiy. Conditions for non-symmetric relations of semi-isolation. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 9 (2012), pp. 161-184. http://geodesic.mathdoc.fr/item/SEMR_2012_9_a0/

[1] S.V. Sudoplatov, The Lachlan problem, Edition of Novosibirsk State Technical University, Novosibirsk, 2009 (Russian)

[2] A. Tsuboi, “On theories having a finite number of nonisomorphic countable models”, J. Symbolic Logic, 50 (1985), 806–808 | DOI | MR | Zbl

[3] A. Tsuboi, “Countable models and unions of theories”, J. Math. Soc. Japan, 38 (1986), 501–508 | DOI | MR | Zbl

[4] B. Kim, “On the number of countable models of a countable supersimple theory”, J. London math. Soc., 60 (1999), 641–645 | DOI | MR | Zbl

[5] J.T. Baldwin, A.H. Lachlan, “On strongly minimal sets”, J. Symbolic Logic, 36 (1971), 79–96 | DOI | MR

[6] A.H. Lachlan, “On the number of countable models of a countable superstable theory”, Proc. Int. Cong. Logic, Methodology and Philosophy of Science, North-Holland, Amsterdam, 1973, 45–56 | MR

[7] A. Pillay, “Countable models of stable theories”, Proc. Amer. Math. Soc., 89 (1983), 666–672 | DOI | MR | Zbl

[8] A. Pillay, “Stable theories, pseudoplanes and the number of countable models”, Ann. Pure and Appl. Logic, 43 (1989), 147–160 | DOI | MR | Zbl

[9] E. Hrushovski, “Finitely based theories”, J. Symbolic Logic, 54 (1989), 221–225 | DOI | MR | Zbl

[10] B.S. Baizhanov, “Orthogonality of one types in weakly o-minimal theories”, Algebra and Model Theory 2, Collection of papers, eds. A. G. Pinus, K. N. Ponomaryov, Edition of Novosibirsk State Technical University, Novosibirsk, 1999, 5–28 | MR

[11] B.S. Baizhanov, B.Sh. Kulpeshov, “On behaviour of $2$-formulas in weakly o-minimal theories”, Mathematical Logic in Asia, Proceedings of the 9th Asian Logic Conferenceeds. . S. Goncharov, R. Downey, H. Ono, World Scientific, Singapore, 2006, 31–40 | DOI | MR | Zbl

[12] M. Benda, “Remarks on countable models”, Fund. math., 81 (1974), 107–119 | MR | Zbl

[13] R. Vaught, “Denumerable models of complete theories”, Infinistic Methods, Pergamon, London, 1961, 303–321 | MR

[14] B.S. Baizhanov, “Expansion of a model of a weakly o-minimal theory by a family of unary predicates”, J. Symbolic Logic, 66 (2001), 1382–1414 | DOI | MR | Zbl

[15] S.V. Sudoplatov, “Inessential combinations and colorings of models”, Siberian Math. J., 44 (2003), 883–890 | DOI | MR | Zbl

[16] S.V. Sudoplatov, “Complete theories with finitely many countable models. I”, Algebra and Logic, 43 (2004), 62–69 | DOI | MR | Zbl

[17] S.V. Sudoplatov, “Type reduction and powerful types”, Siberian Math. J., 33 (1992), 125–133 | DOI | MR | Zbl

[18] R.E. Woodrow, Theories with a finite number of countable models and a small language, Ph. D. Thesis, Simon Fraser University, 1976 | MR

[19] R.E. Woodrow, “A note on countable complete theories having three isomorphism types of countable models”, J. Symbolic Logic, 41 (1976), 672–680 | DOI | MR | Zbl

[20] K. Ikeda, A. Pillay, A. Tsuboi, “On theories having three countable models”, Math. Logic Quaterly, 44 (1998), 161–166 | DOI | MR | Zbl

[21] S.V. Sudoplatov, “Hypergraphs of prime models and distributions of countable models of small theories”, J. Math. Sciences, 169 (2010), 680–695 | DOI | MR | Zbl

[22] P. Tanović, “Theories with constants and three countable models”, Archive for Math. Logic, 46 (2007), 517–527 | DOI | MR | Zbl

[23] P. Tanović, “Asymmetric $RK$-minimal types”, Archive for Math. Logic, 49 (2010), 367–377 | DOI | MR | Zbl

[24] A. Pillay, “Theories with exactly three countable models and theories with algebraic prime models”, J. Symbolic Logic, 45 (1980), 302–310 | DOI | MR | Zbl

[25] A.N. Gavryushkin, “A new spectrum of computable models”, News of Irkutsk State University. Series “Mathematics”, 3 (2010), 7–20 (Russian)

[26] S.V. Sudoplatov, E.V. Ovchinnikova, Discrete mathematics, Edition of Novosibirsk State Technical University, Novosibirsk, 2010 (Russian)

[27] S.V. Sudoplatov, E.V. Ovchinnikova, Mathematical logic and theory of algorithms, Edition of Novosibirsk State Technical University, Novosibirsk, 2010 (Russian)

[28] S. Shelah, Classification theory and the number of non-isomorphic models, North-Holland, Amsterdam, 1990 | MR | Zbl

[29] Handbook of mathematical logic, v. 1, Model Theory, ed. J. Barwise, Nauka, Moscow, 1982 (Russian)

[30] F.O. Wagner, Simple theories, Kluwer Academic Publishers, Dordrecht, Boston, London, 2000 | MR

[31] B. Kim, “Forking in simple unstable theories”, J. London math. Soc., 57 (1998), 257–267 | DOI | MR | Zbl