Transparent Ore extensions over weak $\sigma$-rigid rings
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 8 (2011), pp. 116-122.

Voir la notice de l'article provenant de la source Math-Net.Ru

Recall that a Noetherian ring $R$ is said to be a Transparent ring if there exist irreducible ideals $I_j$, $1\leq j\leq n$ such that $\bigcap_{j=1}^n I_j = 0$ and each $R/I_j$ has a right Artinian quotient ring. Let $R$ be a commutative Noetherian ring, which is also an algebra over $\mathbb Q$ (the field of rational numbers); $\sigma$ an automorphism of $R$ and $\delta$ a $\sigma$-derivation of $R$. Also let $R$ be a weak $\sigma$-rigid ring (i.e. $a\sigma(a)\in N(R)$ if and only if $a\in N(R)$, where $N(R)$ the set of nilpotent elements of R). Then we prove that $R[x;\sigma,\delta]$ is a Transparent ring.
Keywords: $\sigma$-derivation, weak $\sigma$-rigid ring, quotient ring, transparent ring.
Mots-clés : automorphism
@article{SEMR_2011_8_a9,
     author = {V. K. Bhat and Kiran Chib},
     title = {Transparent {Ore} extensions over weak $\sigma$-rigid rings},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {116--122},
     publisher = {mathdoc},
     volume = {8},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2011_8_a9/}
}
TY  - JOUR
AU  - V. K. Bhat
AU  - Kiran Chib
TI  - Transparent Ore extensions over weak $\sigma$-rigid rings
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2011
SP  - 116
EP  - 122
VL  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2011_8_a9/
LA  - en
ID  - SEMR_2011_8_a9
ER  - 
%0 Journal Article
%A V. K. Bhat
%A Kiran Chib
%T Transparent Ore extensions over weak $\sigma$-rigid rings
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2011
%P 116-122
%V 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2011_8_a9/
%G en
%F SEMR_2011_8_a9
V. K. Bhat; Kiran Chib. Transparent Ore extensions over weak $\sigma$-rigid rings. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 8 (2011), pp. 116-122. http://geodesic.mathdoc.fr/item/SEMR_2011_8_a9/

[1] N. Argac and N. J. Groenewald, “A generalization of 2-primal near rings”, Quaest. Math., 27:4 (2004), 397–413 | DOI | MR | Zbl

[2] V. K. Bhat, “Decomposability of iterated extensions”, Int. J. Math. Game Theory Algebra, 15:1 (2006), 45–48 | MR | Zbl

[3] V. K. Bhat, “Polynomial rings over pseudovaluation rings”, Int. J. Math. and Math. Sc., 2007 (2007), Art. ID 20138 | MR

[4] V. K. Bhat, “Ring extensions and their quotient rings”, East-West J. Math., 9:1 (2007), 25–30 | MR | Zbl

[5] V. K. Bhat, “Associated prime ideals of skew polynomial rings”, Beitrage Algebra Geom., 49:1 (2008), 277–283 | MR | Zbl

[6] V. K. Bhat, “Transparent rings and their extensions”, New York J. Math., 15 (2009), 291–299 | MR | Zbl

[7] W. D. Blair, L.W. Small, “Embedding differential and skew polynomial rings into artinian rings”, Proc. Amer. Math. Soc., 109:4 (1990), 881–886 | DOI | MR | Zbl

[8] K. R. Goodearl, R.B. Warfield, An introduction to Non-commutative Noetherian rings, Camb. Uni. Press, 1989 | Zbl

[9] M. Hazewinkel and V. V. Kirichenko, Algebras, rings and modules, v. 1, Mathematics and its applications, Kluwer Academic Press, 2004 | Zbl

[10] N. K. Kim and T. K. Kwak, “Minimal prime ideals in 2-primal rings”, Math. Japon., 50:3 (1999), 415–420 | MR | Zbl

[11] J. Krempa, “Some examples of reduced rings”, Algebra Colloq., 3:4 (1996), 289–300 | MR | Zbl

[12] G. Marks, “On 2-primal Ore extensions”, Comm. Algebra, 29:5 (2001), 2113–2123 | DOI | MR | Zbl

[13] J. C. McConnell and J. C. Robson, Noncommutative Noetherian Rings, Wiley, 1987 ; revised edition: Amer. Math. Soc., 2001 | MR | Zbl

[14] L. Ouyang, “Extensions of generalized $\alpha$-rigid rings”, Int. Electron. J. Algebra, 3 (2008), 103–116 | MR | Zbl

[15] O. Zariski and P. Samuel, Commutative Algebra, v. I, D. Van Nostrand Company, Inc., 1967