Transparent Ore extensions over weak $\sigma$-rigid rings
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 8 (2011), pp. 116-122

Voir la notice de l'article provenant de la source Math-Net.Ru

Recall that a Noetherian ring $R$ is said to be a Transparent ring if there exist irreducible ideals $I_j$, $1\leq j\leq n$ such that $\bigcap_{j=1}^n I_j = 0$ and each $R/I_j$ has a right Artinian quotient ring. Let $R$ be a commutative Noetherian ring, which is also an algebra over $\mathbb Q$ (the field of rational numbers); $\sigma$ an automorphism of $R$ and $\delta$ a $\sigma$-derivation of $R$. Also let $R$ be a weak $\sigma$-rigid ring (i.e. $a\sigma(a)\in N(R)$ if and only if $a\in N(R)$, where $N(R)$ the set of nilpotent elements of R). Then we prove that $R[x;\sigma,\delta]$ is a Transparent ring.
Keywords: $\sigma$-derivation, weak $\sigma$-rigid ring, quotient ring, transparent ring.
Mots-clés : automorphism
@article{SEMR_2011_8_a9,
     author = {V. K. Bhat and Kiran Chib},
     title = {Transparent {Ore} extensions over weak $\sigma$-rigid rings},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {116--122},
     publisher = {mathdoc},
     volume = {8},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2011_8_a9/}
}
TY  - JOUR
AU  - V. K. Bhat
AU  - Kiran Chib
TI  - Transparent Ore extensions over weak $\sigma$-rigid rings
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2011
SP  - 116
EP  - 122
VL  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2011_8_a9/
LA  - en
ID  - SEMR_2011_8_a9
ER  - 
%0 Journal Article
%A V. K. Bhat
%A Kiran Chib
%T Transparent Ore extensions over weak $\sigma$-rigid rings
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2011
%P 116-122
%V 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2011_8_a9/
%G en
%F SEMR_2011_8_a9
V. K. Bhat; Kiran Chib. Transparent Ore extensions over weak $\sigma$-rigid rings. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 8 (2011), pp. 116-122. http://geodesic.mathdoc.fr/item/SEMR_2011_8_a9/