Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2011_8_a5, author = {I. A. Mednykh and M. A. Zindinova}, title = {On the structure of picard group for moebius ladder}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {54--61}, publisher = {mathdoc}, volume = {8}, year = {2011}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2011_8_a5/} }
I. A. Mednykh; M. A. Zindinova. On the structure of picard group for moebius ladder. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 8 (2011), pp. 54-61. http://geodesic.mathdoc.fr/item/SEMR_2011_8_a5/
[1] Cori R., Rossin D., “On the sandpile group of a graph”, European J. Combin., 21:4 (2000), 447–459 | DOI | MR | Zbl
[2] Baker M., Norine S., “Harmonic morphisms and hyperelliptic graphs”, Int. Math. Res. Notes, 15 (2009), 2914–2955 | MR | Zbl
[3] Biggs N. L., “Chip-firing and the critical group of a graph”, J. Algebraic Combin., 9:1 (1999), 25–45 | DOI | MR | Zbl
[4] Bacher R., de la Harpe P. and Nagnibeda T., “The lattice of integral flows and the lattice of integral cuts on a finite graph”, Bulletin de la Soci$\acute{e}$t$\acute{e'}$ Math$\acute{e}$matique de France, 125 (1997), 167–198 | MR | Zbl
[5] Boesch F. T. and Prodinger H., “Spanning tree formulas and chebyshev polynomials”, Graphs and Combinatorics, 2:1 (1986), 191–200 | DOI | MR | Zbl
[6] Lorenzini D., “Smith normal form and laplacians”, Journal of Combinatorial Theory, Series B, 98:6 (2008), 1271–1300 | DOI | MR | Zbl
[7] Kirchhoff G., “Über die Auflösung der Gleichungen, auf welche man bei der untersuchung der linearen verteilung galvanischer Ströme geführt wird”, Ann. Phys. Chem., 72 (1847), 497–508 | DOI
[8] Hungerford T. W., Algebra, Holt, Rinehart and Winston, Inc., New York, 1974 | MR | Zbl
[9] Marcus M., Minc H., A Survey of Matrix Theory and Matrix Inequalities, Dover Publications, Mineola, New York, 1992, 192 pp. | MR
[10] Pingge Chen, Yaoping Hou and Chingwah Woo, “On the critical group of the Möbius ladder graph”, Australas. J. Combin., 36 (2006), 133–142 | MR | Zbl