On the structure of picard group for moebius ladder
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 8 (2011), pp. 54-61.

Voir la notice de l'article provenant de la source Math-Net.Ru

The notion of the Picard group of a graph (also known as Jacobian group, sandpile group, critical group) was independently given by many authors. This is a very important algebraic invariant of a finite graph. In particular, the order of the Picard group coinsides with the number of spanning trees for a graph. The latter number is known for the simplest families of graphs such as Wheel, Fan, Prism, Ladder and Moebius ladder graphs. At the same time the structure of the Picard group is known only in several cases. The aim of this paper is to determine the structure of the Picard group of the Moebius ladder graphs.
Keywords: Graph, Abelian group, Chebyshev polynomial.
Mots-clés : Picard group
@article{SEMR_2011_8_a5,
     author = {I. A. Mednykh and M. A. Zindinova},
     title = {On the structure of picard group for moebius ladder},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {54--61},
     publisher = {mathdoc},
     volume = {8},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2011_8_a5/}
}
TY  - JOUR
AU  - I. A. Mednykh
AU  - M. A. Zindinova
TI  - On the structure of picard group for moebius ladder
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2011
SP  - 54
EP  - 61
VL  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2011_8_a5/
LA  - en
ID  - SEMR_2011_8_a5
ER  - 
%0 Journal Article
%A I. A. Mednykh
%A M. A. Zindinova
%T On the structure of picard group for moebius ladder
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2011
%P 54-61
%V 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2011_8_a5/
%G en
%F SEMR_2011_8_a5
I. A. Mednykh; M. A. Zindinova. On the structure of picard group for moebius ladder. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 8 (2011), pp. 54-61. http://geodesic.mathdoc.fr/item/SEMR_2011_8_a5/

[1] Cori R., Rossin D., “On the sandpile group of a graph”, European J. Combin., 21:4 (2000), 447–459 | DOI | MR | Zbl

[2] Baker M., Norine S., “Harmonic morphisms and hyperelliptic graphs”, Int. Math. Res. Notes, 15 (2009), 2914–2955 | MR | Zbl

[3] Biggs N. L., “Chip-firing and the critical group of a graph”, J. Algebraic Combin., 9:1 (1999), 25–45 | DOI | MR | Zbl

[4] Bacher R., de la Harpe P. and Nagnibeda T., “The lattice of integral flows and the lattice of integral cuts on a finite graph”, Bulletin de la Soci$\acute{e}$t$\acute{e'}$ Math$\acute{e}$matique de France, 125 (1997), 167–198 | MR | Zbl

[5] Boesch F. T. and Prodinger H., “Spanning tree formulas and chebyshev polynomials”, Graphs and Combinatorics, 2:1 (1986), 191–200 | DOI | MR | Zbl

[6] Lorenzini D., “Smith normal form and laplacians”, Journal of Combinatorial Theory, Series B, 98:6 (2008), 1271–1300 | DOI | MR | Zbl

[7] Kirchhoff G., “Über die Auflösung der Gleichungen, auf welche man bei der untersuchung der linearen verteilung galvanischer Ströme geführt wird”, Ann. Phys. Chem., 72 (1847), 497–508 | DOI

[8] Hungerford T. W., Algebra, Holt, Rinehart and Winston, Inc., New York, 1974 | MR | Zbl

[9] Marcus M., Minc H., A Survey of Matrix Theory and Matrix Inequalities, Dover Publications, Mineola, New York, 1992, 192 pp. | MR

[10] Pingge Chen, Yaoping Hou and Chingwah Woo, “On the critical group of the Möbius ladder graph”, Australas. J. Combin., 36 (2006), 133–142 | MR | Zbl