Construction of partitions of the set of all $p$-ary vectors of length $p+1$ into Hamming codes
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 8 (2011), pp. 372-380

Voir la notice de l'article provenant de la source Math-Net.Ru

We suggest the construction of a partition of the set of all $p$‑ary vectors of length $p+1$ into perfect $p$-ary codes, where $p$ is a prime. The construction yields the lower bound $N(p)>(e^{\pi\sqrt{2p/3}})/(4p\sqrt{3})$ on the number of nonequivalent such partitions for any prime $p$.
Keywords: perfect $q$-ary code, Hamming code, switchings.
Mots-clés : partition into codes
@article{SEMR_2011_8_a31,
     author = {A. V. Los' and K. I. Burnakov},
     title = {Construction of partitions of the set of all $p$-ary vectors of length $p+1$ into {Hamming} codes},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {372--380},
     publisher = {mathdoc},
     volume = {8},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2011_8_a31/}
}
TY  - JOUR
AU  - A. V. Los'
AU  - K. I. Burnakov
TI  - Construction of partitions of the set of all $p$-ary vectors of length $p+1$ into Hamming codes
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2011
SP  - 372
EP  - 380
VL  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2011_8_a31/
LA  - ru
ID  - SEMR_2011_8_a31
ER  - 
%0 Journal Article
%A A. V. Los'
%A K. I. Burnakov
%T Construction of partitions of the set of all $p$-ary vectors of length $p+1$ into Hamming codes
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2011
%P 372-380
%V 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2011_8_a31/
%G ru
%F SEMR_2011_8_a31
A. V. Los'; K. I. Burnakov. Construction of partitions of the set of all $p$-ary vectors of length $p+1$ into Hamming codes. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 8 (2011), pp. 372-380. http://geodesic.mathdoc.fr/item/SEMR_2011_8_a31/