On $s$-semipermutable and weakly $s$-permutable subgroups
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 8 (2011), pp. 39-47.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $H$ be a subgroup of a finite group $G$. $H$ is said to be $s$-semipermutable in $G$ if $HG_{p}=G_{p}H$ for any Sylow $p$-subgroup $G_{p}$ of $G$ with $(p,|H|)=1$; $H$ is called weakly $s$-permutable in $G$ if there exists a subnormal subgroup $T$ of $G$ such that $G=HT$ and $H\cap T\leq H_{sG}$, where $H_{sG}$ is the subgroup of $H$ generated by all those subgroups of $H$ which are $s$-permutable in $G$. We fix in every non-cyclic Sylow subgroup $P$ of $G$ a subgroup $D$ with $1|D||P|$ and study the structure of $G$ under the assumption that every subgroup $H$ of $P$ with $|H|=|D|$ is either $s$-semipermutable or weakly $s$-permutable in $G$. Some recent results are generalized and unified.
Keywords: weakly $s$-permutable, $p$-nilpotent, the generalized Fitting subgroup.
Mots-clés : $s$-semipermutable
@article{SEMR_2011_8_a3,
     author = {Ch. Li},
     title = {On $s$-semipermutable and weakly $s$-permutable subgroups},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {39--47},
     publisher = {mathdoc},
     volume = {8},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2011_8_a3/}
}
TY  - JOUR
AU  - Ch. Li
TI  - On $s$-semipermutable and weakly $s$-permutable subgroups
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2011
SP  - 39
EP  - 47
VL  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2011_8_a3/
LA  - en
ID  - SEMR_2011_8_a3
ER  - 
%0 Journal Article
%A Ch. Li
%T On $s$-semipermutable and weakly $s$-permutable subgroups
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2011
%P 39-47
%V 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2011_8_a3/
%G en
%F SEMR_2011_8_a3
Ch. Li. On $s$-semipermutable and weakly $s$-permutable subgroups. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 8 (2011), pp. 39-47. http://geodesic.mathdoc.fr/item/SEMR_2011_8_a3/

[1] B. Huppert, Endliche Gruppen I, Springer-Verlag, Berlin, New York, 1967 | MR | Zbl

[2] O. H. Kegel, “Sylow Gruppen und subnormalteiler endlicher Gruppen”, Math. Z, 78 (1962), 205–221 | DOI | MR | Zbl

[3] Q. Zhang and L. Wang, “The infuence of $s$-semipermutable subgroups on the structure of a finite group”, Acta Math. Sinica, 48 (2005), 81–88 | MR | Zbl

[4] L. Wang and Y. Wang, “On $s$-semipermutable maximal and minimal subgroups of Sylow $p$-groups of finite groups”, Comm. Algebra, 34 (2006), 143–149 | DOI | MR | Zbl

[5] Y. Li and Y. Wang, “The infuence of minimal subgroups on the structure of a finite group”, Proc. Amer. Math. Soc., 131 (2003), 337–341 | DOI | MR | Zbl

[6] A. N. Skiba, “On weakly $s$-permutable subgroups of finite groups”, J. Algebra, 315 (2007), 192–209 | DOI | MR | Zbl

[7] K. Doerk and T. Hawkes, Finite Soluble Groups, Water de Gruyter, Berlin, New York, 1992 | MR

[8] Y. Li, Y. Wang and H. Wei, “On $p$-nilpotency of finite groups with some subgroups $\pi$-quasinormally embedded”, Acta. Math. Hungar, 108 (2005), 283–298 | DOI | MR | Zbl