Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2011_8_a3, author = {Ch. Li}, title = {On $s$-semipermutable and weakly $s$-permutable subgroups}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {39--47}, publisher = {mathdoc}, volume = {8}, year = {2011}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2011_8_a3/} }
Ch. Li. On $s$-semipermutable and weakly $s$-permutable subgroups. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 8 (2011), pp. 39-47. http://geodesic.mathdoc.fr/item/SEMR_2011_8_a3/
[1] B. Huppert, Endliche Gruppen I, Springer-Verlag, Berlin, New York, 1967 | MR | Zbl
[2] O. H. Kegel, “Sylow Gruppen und subnormalteiler endlicher Gruppen”, Math. Z, 78 (1962), 205–221 | DOI | MR | Zbl
[3] Q. Zhang and L. Wang, “The infuence of $s$-semipermutable subgroups on the structure of a finite group”, Acta Math. Sinica, 48 (2005), 81–88 | MR | Zbl
[4] L. Wang and Y. Wang, “On $s$-semipermutable maximal and minimal subgroups of Sylow $p$-groups of finite groups”, Comm. Algebra, 34 (2006), 143–149 | DOI | MR | Zbl
[5] Y. Li and Y. Wang, “The infuence of minimal subgroups on the structure of a finite group”, Proc. Amer. Math. Soc., 131 (2003), 337–341 | DOI | MR | Zbl
[6] A. N. Skiba, “On weakly $s$-permutable subgroups of finite groups”, J. Algebra, 315 (2007), 192–209 | DOI | MR | Zbl
[7] K. Doerk and T. Hawkes, Finite Soluble Groups, Water de Gruyter, Berlin, New York, 1992 | MR
[8] Y. Li, Y. Wang and H. Wei, “On $p$-nilpotency of finite groups with some subgroups $\pi$-quasinormally embedded”, Acta. Math. Hungar, 108 (2005), 283–298 | DOI | MR | Zbl