Glivenko theorem for $N^*$-extensions
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 8 (2011), pp. 365-368.

Voir la notice de l'article provenant de la source Math-Net.Ru

Logic $N^*$ was defined semantically via combination of Kripke frames for intuitionistic logic with Routley's $*$-operator, which is used to interpret the negation operation. In this notice, we find out the least logic in the class of $N^*$-extensions, which satisfy Glivenko's theorem, and describe the Kripke semantics of this logic.
Keywords: Routley semantics
Mots-clés : Glivenko theorem.
@article{SEMR_2011_8_a29,
     author = {S. P. Odintsov},
     title = {Glivenko theorem for $N^*$-extensions},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {365--368},
     publisher = {mathdoc},
     volume = {8},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2011_8_a29/}
}
TY  - JOUR
AU  - S. P. Odintsov
TI  - Glivenko theorem for $N^*$-extensions
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2011
SP  - 365
EP  - 368
VL  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2011_8_a29/
LA  - en
ID  - SEMR_2011_8_a29
ER  - 
%0 Journal Article
%A S. P. Odintsov
%T Glivenko theorem for $N^*$-extensions
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2011
%P 365-368
%V 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2011_8_a29/
%G en
%F SEMR_2011_8_a29
S. P. Odintsov. Glivenko theorem for $N^*$-extensions. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 8 (2011), pp. 365-368. http://geodesic.mathdoc.fr/item/SEMR_2011_8_a29/

[1] P. Cabalar, S.P. Odintsov, D. Pearce, “Logical foundations of well-founded semantics”, Principles of Knowledge Representation and Reasoning, Proceedings of the 10th International Conference (KR2006), eds. P. Doherty et al., AAAI Press, Menlo Park, California, 2006, 25–36

[2] S.P. Odintsov, “Combining intuitionstic connectives and Routley negation”, SEMR, 7 (2010), 21–41 | MR

[3] R. Routley, V. Routley, “The semantics of first degree entailment”, Noûs, 6 (1972), 335–359 | MR