Fixed points of large prime-order elements in the equicharacteristic action of linear and unitary groups
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 8 (2011), pp. 333-340.

Voir la notice de l'article provenant de la source Math-Net.Ru

We find sufficient arithmetic conditions for element of large prime order of a finite simple linear or unitary group to have a nontrivial fixed point in equicharacteristic modules. Some applications are made to the study of the prime graph of simple groups.
Keywords: finite simple groups, fixed points, equicharacteristic action, prime graph.
@article{SEMR_2011_8_a27,
     author = {Andrei V. Zavarnitsine},
     title = {Fixed points of large prime-order elements in the equicharacteristic action of linear and unitary groups},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {333--340},
     publisher = {mathdoc},
     volume = {8},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2011_8_a27/}
}
TY  - JOUR
AU  - Andrei V. Zavarnitsine
TI  - Fixed points of large prime-order elements in the equicharacteristic action of linear and unitary groups
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2011
SP  - 333
EP  - 340
VL  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2011_8_a27/
LA  - en
ID  - SEMR_2011_8_a27
ER  - 
%0 Journal Article
%A Andrei V. Zavarnitsine
%T Fixed points of large prime-order elements in the equicharacteristic action of linear and unitary groups
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2011
%P 333-340
%V 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2011_8_a27/
%G en
%F SEMR_2011_8_a27
Andrei V. Zavarnitsine. Fixed points of large prime-order elements in the equicharacteristic action of linear and unitary groups. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 8 (2011), pp. 333-340. http://geodesic.mathdoc.fr/item/SEMR_2011_8_a27/

[1] N. Bourbaki, Éléments de mathématique. Fasc. XXXVIII: Groupes et algèbres de Lie. Chapitre VII: Sous-algèbres de Cartan, éléments réguliers. Chapitre VIII: Algèbres de Lie semi-simples déployées, Actualités Scientifiques et Industrielles, 1364, Hermann, Paris, 1975

[2] M. Hagie, “The prime graph of a sporadic simple group”, Commun. Algebra, 2003, no. 9, 4405–4424

[3] J.C. Jantzen, Representations of algebraic groups, Mathematical Surveys and Monographs, 107, Second edition, American Mathematical Society, Providence, RI, 2003

[4] F. Lübeck, “Small degree representations of finite Chevalley groups in defining characteristic”, LMS J. Comput. Math., 4 (2001), 135–169

[5] V.D. Mazurov, “The set of orders of elements in a finite group”, Algebra and Logic, 33:1 (1994), 81–89

[6] V.D. Mazurov, A.V. Zavarnitsine, “Element orders in coverings of symmetric and alternating groups”, Algebra and Logic, 38:3 (1999), 159–170

[7] V.D. Mazurov, A.V. Zavarnitsine, “On element orders in coverings of the simple groups $\mathrm L_n(q)$ and $\mathrm U_n(q)$”, Proceedings of the Steklov Institute of Mathematics, 1, 2007, 145–154

[8] R. Steinberg, Lectures on Chevalley Groups, Yale University, New Haven, 1968

[9] A.V. Vasiliev, E.P. Vdovin, “An Adjacency Criterion for the Prime Graph of a Finite Simple Group”, Algebra and Logic, 44:6 (2005), 381–406

[10] A.V. Zavarnitsine, “On recognition of finite groups by the prime graph”, Algebra and Logic, 45:4 (2006), 220–231

[11] A.V. Zavarnitsine, “Exceptional action of the simple groups $\mathrm{L}_4(q)$ in the defining characteristic”, Siberian Electronic Math. Reports, 5 (2008), 68–74

[12] A.V. Zavarnitsine, “Properties of element orders in covers for $\mathrm L_n(q)$ and $\mathrm U_n(q)$”, Sib. Math. J., 49:2 (2008), 246–256

[13] A.V. Zavarnitsine, “Uniqueness of the prime graph of $\mathrm L_{16}(2)$”, Siberian Electronic Math. Reports, 7 (2010), 119–122