Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2011_8_a24, author = {A. N. Glebov and A. V. Gordeeva and D. Zh. Zambalayeva}, title = {7/5-approximation algorithm for {2-PSP} on minimum with different weight functions}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {296--309}, publisher = {mathdoc}, volume = {8}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2011_8_a24/} }
TY - JOUR AU - A. N. Glebov AU - A. V. Gordeeva AU - D. Zh. Zambalayeva TI - 7/5-approximation algorithm for 2-PSP on minimum with different weight functions JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2011 SP - 296 EP - 309 VL - 8 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2011_8_a24/ LA - ru ID - SEMR_2011_8_a24 ER -
%0 Journal Article %A A. N. Glebov %A A. V. Gordeeva %A D. Zh. Zambalayeva %T 7/5-approximation algorithm for 2-PSP on minimum with different weight functions %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2011 %P 296-309 %V 8 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2011_8_a24/ %G ru %F SEMR_2011_8_a24
A. N. Glebov; A. V. Gordeeva; D. Zh. Zambalayeva. 7/5-approximation algorithm for 2-PSP on minimum with different weight functions. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 8 (2011), pp. 296-309. http://geodesic.mathdoc.fr/item/SEMR_2011_8_a24/
[1] A.A. Ageev, A.E. Baburin, E.Kh. Gimadi, “Polinomialnyi algoritm s otsenkoi tochnosti $3/4$ dlya otyskaniya dvukh neperesekayuschikhsya gamiltonovykh tsiklov maksimalnogo vesa”, Diskret. analiz i issled. operatsii, ser. 1, 13:2 (2006), 11–20 | MR | Zbl
[2] A.E. Baburin, E.Kh. Gimadi, N.M. Korkishko, “Priblizhennye algoritmy dlya nakhozhdeniya dvukh reberno neperesekayuschikhsya gamiltonovykh tsikla minimalnogo vesa”, Diskret. analiz i issled. operatsii, ser. 2, 11:1 (2004), 11–25 | MR | Zbl
[3] E.Kh. Gimadi, Yu.V. Glazkov, A.N. Glebov, “Priblizhennye algoritmy resheniya zadachi o dvukh kommivoyazherakh v polnom grafe s vesami reber 1 i 2”, Diskret. analiz i issled. operatsii, ser. 2, 14:2 (2007), 41–61 | MR | Zbl
[4] A.I. Serdyukov, “O nekotorykh ekstremalnykh obkhodakh v grafakh”, Upravlyaemye sistemy. Sb. nauch. tr., 17, 1978, 76–79 | MR | Zbl
[5] P. Berman, M. Karpinski, “$8/7$-approximation algorithm for (1,2)-TSP”, Proc. of the 17th annual ACM-SIAM symposium on discrete algorithms, SODA 2006 (Miami, January 22–26, 2006), ACM Press, New York, 2006, 641–648 | MR | Zbl
[6] N. Christofides, Worst-case analysis of a new heuristic for the traveling salesman problem, Technical report CS-93-19, Carnegie Mellon University, 1976
[7] J.B. J.M. De Kort, “Lower bounds for symmetric $K$-peripatetic salesman problems”, Optimization, 22:1 (1991), 113–122 | DOI | MR | Zbl
[8] J.B. J.M. De Kort, “Bounds for the symmetric $2$-peripatetic salesman problem”, Optimization, 23:4 (1992), 357–367 | DOI | MR | Zbl
[9] J.B. J.M. De Kort, “A branch and bound algorithm for symmetric $2$-peripatetic salesman problems”, European J. Oper. Res., 70:2 (1993), 229–243 | DOI | MR | Zbl
[10] C.H. Papadimitriou, M. Yannakakis, “The travelling salesman problem with distances One and Two”, Math. Oper. Res., 18:1 (1993), 1–11 | DOI | MR | Zbl
[11] A.E. Baburin, F. Della Croce, E.K. Gimadi, Y.V. Glazkov, V.Th. Paschos, “Approximation algorithms for the 2-peripatetic salesman problem with edge weights 1 and 2”, Discrete Applied Mathematics, 157:9 (2009), 1988–1992 | DOI | MR | Zbl