On finitely Lipschitz space mappings
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 8 (2011), pp. 284-295

Voir la notice de l'article provenant de la source Math-Net.Ru

It is established that a ring $Q$-homeomorphism with respect to $p$-modulus in $\mathbb R^n$, $n\geqslant2$, is finitely Lipschitz if $n-1$ and if the mean integral value of $Q(x)$ over infinitesimal balls $B(x_0,\varepsilon)$ is finite everywhere.
Keywords: $Q$-homeomorphisms, $p$-modulus, $p$-capacity, finite Lipschitz.
@article{SEMR_2011_8_a23,
     author = {R. R. Salimov},
     title = {On finitely {Lipschitz}  space mappings},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {284--295},
     publisher = {mathdoc},
     volume = {8},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2011_8_a23/}
}
TY  - JOUR
AU  - R. R. Salimov
TI  - On finitely Lipschitz  space mappings
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2011
SP  - 284
EP  - 295
VL  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2011_8_a23/
LA  - en
ID  - SEMR_2011_8_a23
ER  - 
%0 Journal Article
%A R. R. Salimov
%T On finitely Lipschitz  space mappings
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2011
%P 284-295
%V 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2011_8_a23/
%G en
%F SEMR_2011_8_a23
R. R. Salimov. On finitely Lipschitz  space mappings. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 8 (2011), pp. 284-295. http://geodesic.mathdoc.fr/item/SEMR_2011_8_a23/