Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2011_8_a21, author = {A. M. Staroletov}, title = {Sporadic composition factors of finite groups isospectral to simple groups}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {268--272}, publisher = {mathdoc}, volume = {8}, year = {2011}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2011_8_a21/} }
A. M. Staroletov. Sporadic composition factors of finite groups isospectral to simple groups. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 8 (2011), pp. 268-272. http://geodesic.mathdoc.fr/item/SEMR_2011_8_a21/
[1] V. D. Mazurov, “Groups with prescribed spectrum”, Izv. Ural. Gos. Univ. Math. Mekh., 36:7 (2005), 119–138
[2] A. V. Vasil$'$ev, M. A. Grechkoseeva, V. D. Mazurov, “On finite groups isospectral to simple symplectic and orthogonal groups”, Siberian Math. J., 50:6 (2009), 965–981
[3] A. S. Kondrat$'$ev, “On recognizability by spectrum of finite simple orthogonal groups, II”, Vladikavkaz Math. J., 11:4 (2009), 32–43
[4] A. S. Kondrat'ev, “Recognizability by spectrum of groups $E_8(q)$”, Trudy Inst. Mat. i Mekh. UrO RAN, 16:3 (2010), 146–149
[5] A. V. Vasil$'$ev, M. A. Grechkoseeva, A. M. Staroletov, “On finite groups isospectral to simple linear and unitary groups”, Siberian Math. J., 52:1 (2011), 30–40
[6] V. D. Mazurov, “Recognition of finite groups by a set of orders of their elements”, Algebra and Logic, 37:6 (1998), 371–379
[7] V. D. Mazurov, W. J. Shi, “A note to the characterization of sporadic simple groups”, Algebra and Logic, 5:3 (1998), 285–288
[8] S. Lipschutz, W. J. Shi, “Finite groups whose element orders do not exceed twenty”, Prog. Nat. Sci., 10:1 (2000), 11–21
[9] A. M. Staroletov, “Groups isospectral to the degree 10 alternating group”, Siberian Math. J., 51:3 (2010), 507–514
[10] A. V. Vasili'ev, I. B. Gorshkov, “On recognitioin of finite goups with connected prime graph”, Siberian Math. J., 50:2 (2009), 233–238
[11] A. V. Vasil'ev, “On connection between the structure of a finite group and its prime graph”, Siberian Math. J., 46:3 (2005), 396–404
[12] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, Atlas of finite groups: maximal subgroups and ordinary characters for simple groups, Clarendon Press, Oxford, 1985
[13] R. Brandl, W. Shi, “The characterization of $PSL(2,q)$ by its element orders”, J. Algebra, 143:2 (1991), 388–400
[14] A. V. Zavarnitsin, “Recognition of simple groups $U_3(q)$ by element orders”, Algebra and Logic, 45:2 (2006), 106–116
[15] A. V. Vasil'ev, E. P. Vdovin, “An adjacency criterion for the prime graph of a finite simple group”, Algebra and Logic, 44:6 (2005), 381–406
[16] A. V. Vasil'ev, “Recognizing Groups $G_2(3^n)$ by their element orders”, Algebra and Logic, 41:2 (2002), 74–80
[17] V. D. Mazurov, “Recognition of finite simple groups $S_4(q)$ by their element orders”, Algebra and Logic, 41:2 (2002), 93–110
[18] W. M. Kantor, A. Seress, “Prime power graphs for groups of Lie type”, J. Algebra, 247 (2002), 370–434
[19] D. Deriziotis, Conjugacy classes and centralizers of semisimple elements in finite groups of Lie type, Vorlesungen aus dem Fachbereich Mathematik der Universitat GH Essen, 11, Universitat Essen, Fachbereich Mathematik, Essen, 1984
[20] O. A. Alekseeva and A. S. Kondrat'ev, “Quasirecognition of one class of finite simple groups by the set of element orders”, Siberian Math. J., 44:2 (2003), 195–207