Sporadic composition factors of finite groups isospectral to simple groups
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 8 (2011), pp. 268-272.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper considers a group which has a nonabelian sporadic composition factor and the same set of element orders as a finite simple group. It is proved that such group is isomorphic to $U_5(2)$ or a sporadic group.
Keywords: recognition by spectrum, sporadic groups, finite simple groups.
@article{SEMR_2011_8_a21,
     author = {A. M. Staroletov},
     title = {Sporadic composition factors of finite groups isospectral to simple groups},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {268--272},
     publisher = {mathdoc},
     volume = {8},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2011_8_a21/}
}
TY  - JOUR
AU  - A. M. Staroletov
TI  - Sporadic composition factors of finite groups isospectral to simple groups
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2011
SP  - 268
EP  - 272
VL  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2011_8_a21/
LA  - en
ID  - SEMR_2011_8_a21
ER  - 
%0 Journal Article
%A A. M. Staroletov
%T Sporadic composition factors of finite groups isospectral to simple groups
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2011
%P 268-272
%V 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2011_8_a21/
%G en
%F SEMR_2011_8_a21
A. M. Staroletov. Sporadic composition factors of finite groups isospectral to simple groups. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 8 (2011), pp. 268-272. http://geodesic.mathdoc.fr/item/SEMR_2011_8_a21/

[1] V. D. Mazurov, “Groups with prescribed spectrum”, Izv. Ural. Gos. Univ. Math. Mekh., 36:7 (2005), 119–138

[2] A. V. Vasil$'$ev, M. A. Grechkoseeva, V. D. Mazurov, “On finite groups isospectral to simple symplectic and orthogonal groups”, Siberian Math. J., 50:6 (2009), 965–981

[3] A. S. Kondrat$'$ev, “On recognizability by spectrum of finite simple orthogonal groups, II”, Vladikavkaz Math. J., 11:4 (2009), 32–43

[4] A. S. Kondrat'ev, “Recognizability by spectrum of groups $E_8(q)$”, Trudy Inst. Mat. i Mekh. UrO RAN, 16:3 (2010), 146–149

[5] A. V. Vasil$'$ev, M. A. Grechkoseeva, A. M. Staroletov, “On finite groups isospectral to simple linear and unitary groups”, Siberian Math. J., 52:1 (2011), 30–40

[6] V. D. Mazurov, “Recognition of finite groups by a set of orders of their elements”, Algebra and Logic, 37:6 (1998), 371–379

[7] V. D. Mazurov, W. J. Shi, “A note to the characterization of sporadic simple groups”, Algebra and Logic, 5:3 (1998), 285–288

[8] S. Lipschutz, W. J. Shi, “Finite groups whose element orders do not exceed twenty”, Prog. Nat. Sci., 10:1 (2000), 11–21

[9] A. M. Staroletov, “Groups isospectral to the degree 10 alternating group”, Siberian Math. J., 51:3 (2010), 507–514

[10] A. V. Vasili'ev, I. B. Gorshkov, “On recognitioin of finite goups with connected prime graph”, Siberian Math. J., 50:2 (2009), 233–238

[11] A. V. Vasil'ev, “On connection between the structure of a finite group and its prime graph”, Siberian Math. J., 46:3 (2005), 396–404

[12] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, Atlas of finite groups: maximal subgroups and ordinary characters for simple groups, Clarendon Press, Oxford, 1985

[13] R. Brandl, W. Shi, “The characterization of $PSL(2,q)$ by its element orders”, J. Algebra, 143:2 (1991), 388–400

[14] A. V. Zavarnitsin, “Recognition of simple groups $U_3(q)$ by element orders”, Algebra and Logic, 45:2 (2006), 106–116

[15] A. V. Vasil'ev, E. P. Vdovin, “An adjacency criterion for the prime graph of a finite simple group”, Algebra and Logic, 44:6 (2005), 381–406

[16] A. V. Vasil'ev, “Recognizing Groups $G_2(3^n)$ by their element orders”, Algebra and Logic, 41:2 (2002), 74–80

[17] V. D. Mazurov, “Recognition of finite simple groups $S_4(q)$ by their element orders”, Algebra and Logic, 41:2 (2002), 93–110

[18] W. M. Kantor, A. Seress, “Prime power graphs for groups of Lie type”, J. Algebra, 247 (2002), 370–434

[19] D. Deriziotis, Conjugacy classes and centralizers of semisimple elements in finite groups of Lie type, Vorlesungen aus dem Fachbereich Mathematik der Universitat GH Essen, 11, Universitat Essen, Fachbereich Mathematik, Essen, 1984

[20] O. A. Alekseeva and A. S. Kondrat'ev, “Quasirecognition of one class of finite simple groups by the set of element orders”, Siberian Math. J., 44:2 (2003), 195–207