Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2011_8_a20, author = {A. I. Zadorin and N. A. Zadorin}, title = {Interpolation of functions with the boundary layer components and its application in a two-grid method}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {247--267}, publisher = {mathdoc}, volume = {8}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2011_8_a20/} }
TY - JOUR AU - A. I. Zadorin AU - N. A. Zadorin TI - Interpolation of functions with the boundary layer components and its application in a two-grid method JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2011 SP - 247 EP - 267 VL - 8 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2011_8_a20/ LA - ru ID - SEMR_2011_8_a20 ER -
%0 Journal Article %A A. I. Zadorin %A N. A. Zadorin %T Interpolation of functions with the boundary layer components and its application in a two-grid method %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2011 %P 247-267 %V 8 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2011_8_a20/ %G ru %F SEMR_2011_8_a20
A. I. Zadorin; N. A. Zadorin. Interpolation of functions with the boundary layer components and its application in a two-grid method. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 8 (2011), pp. 247-267. http://geodesic.mathdoc.fr/item/SEMR_2011_8_a20/
[1] N.S. Bakhvalov, “K optimizatsii metodov resheniya kraevykh zadach pri nalichii pogranichnogo sloya”, Zhurnal vychisl. matem. i mat. fiziki, 9:4 (1969), 841–890
[2] G.I. Shishkin, Setochnye approksimatsii singulyarno vozmuschennykh ellipticheskikh i parabolicheskikh uravnenii, UrO RAN, Ekaterinburg, 1992
[3] J.J.H. Miller, E. O'Riordan, G.I. Shishkin, Fitted numerical methods for singular perturbation problems, World Scientific, Singapore, 1996
[4] Yu.I. Shokin, V.D. Liseikin, Yu.V. Likhanova, Raznostnye setki i koordinatnye preobrazovaniya dlya chislennogo resheniya singulyarno vozmuschennykh zadach, Nauka, Novosibirsk, 2007
[5] H.G. Roos, M. Stynes, L. Tobiska, Numerical methods for singularly perturbed differential equations, convection-diffusion and flow problems, Springer, Berlin, 2008
[6] A.M. Ilin, “Raznostnaya skhema dlya differentsialnogo uravneniya s malym parametrom pri starshei proizvodnoi”, Matem. zametki, 6:2 (1969), 237–248
[7] K.V. Emelyanov, “Raznostnaya skhema dlya trekhmernogo ellipticheskogo uravneniya s malym parametrom pri starshei proizvodnoi”, Kraevye zadachi dlya uravnenii matematicheskoi fiziki, UrO RAN, Ekaterinburg, 1973, 30–42
[8] A.A. Samarskii, E.S. Nikolaev, Metody resheniya setochnykh uravnenii, Nauka, Moskva, 1978
[9] V.P. Ilin, Metody konechnykh raznostei i konechnykh ob'emov dlya ellipticheskikh uravnenii, IVM i MG SO RAN, Novosibirsk, 2001
[10] R.P. Fedorenko, “O skorosti skhodimosti odnogo iteratsionnogo protsessa”, Zhurnal vychisl. matem. i mat. fiziki, 4:3 (1964), 221–233
[11] N.S. Bakhvalov, “O skhodimosti odnogo relaksatsionnogo metoda pri estestvennykh ogranicheniyakh na ellipticheskii operator”, Zhurnal vychisl. matem. i mat. fiziki, 6:5 (1966), 861–883
[12] A. Brandt, “Multi-level adaptive solutions to boundary value problems”, Math. Comput., 31 (1977), 333–390
[13] W. Hackbusch, Multi-grid methods and applications, Springer, Berlin, 1985
[14] V.V. Shaidurov, Mnogosetochnye metody konechnykh elementov, Nauka, Moskva, 1989
[15] R.P. Fedorenko, Vvedenie v vychislitelnuyu fiziku, MFTI, Moskva, 1994
[16] W. Hackbusch, T. Probst, “Downwind Gauss-Seidel smoothing for convection dominated problems”, Numer. Linear Algebra Appl., 4 (1997), 85–102
[17] M.A. Olshanskii, “Analiz mnogosetochnogo metoda dlya uravnenii konvektsii-diffuzii s kraevymi usloviyami Dirikhle”, Zhurnal vychisl. matem. i mat. fiziki, 44:8 (2004), 1462–1491
[18] L.A. Krukier, G.V. Muratova, “Reshenie statsionarnoi zadachi konvektsii-diffuzii s preobladayuschei konvektsiei mnogosetochnym metodom so spetsialnymi sglazhivatelyami”, Matem. modelirovanie, 18:5 (2006), 63–72
[19] J. Xu, “A novel two-grid method for semilinear elliptic equation”, SIAM J. Sci. Comput., 15 (1994), 231–237
[20] O. Axelsson, W. Layton, “A two-level discretization of nonlinear boundary value problems”, SIAM J. Numer. Anal., 33 (1996), 2359–2374
[21] Xiaoxia Dai, Xiaoliang Cheng, “A two-grid method based on Newton iteration for the Navier-Stokes equations”, Journal of Comp. and Appl. Math., 220:1–2 (2008), 566–573
[22] L.G. Vulkov, A.I. Zadorin, “Two-grid interpolation algorithms for difference schemes of exponential type for semilinear diffusion convection-dominated equations”, American Institute of Physics, Conference proceedings, 1067, 2008, 284–292
[23] L.G. Vulkov, A.I. Zadorin, “Two-grid algorithms for an ordinary second order equation with exponential boundary layer in the solution”, International Journal of Numerical Analysis and Modeling, 7:3 (2010), 580–592
[24] A.I. Zadorin, “Metod interpolyatsii dlya zadachi s pogranichnym sloem”, Sibirskii zhurnal vychisl. matematiki, 10:3 (2007), 267–275
[25] I.T. Angelova, L.G. Vulkov, “A two-grid method on layer-adapted meshes for a semilinear 2D reaction-diffusion problem”, Lect. Notes in Computer Science, 5910, Berlin, 2009, 703–710
[26] Yu.S. Zavyalov, B.I. Kvasov , V.L. Miroshnichenko, Metody splain-funktsii, Nauka, Moskva, 1980
[27] A.I. Zadorin, “Interpolation Method for a Function with a Singular Component”, Lect. Notes in Computer Science, 5434, Berlin, 2009, 612–619
[28] A.I. Zadorin, N.A. Zadorin, “Splain-interpolyatsiya na ravnomernoi setke funktsii s pogransloinoi sostavlyayuschei”, Zhurnal vychisl. matem. i mat. fiziki, 50:2 (2010), 221–233
[29] A.I. Zadorin, “Metod interpolyatsii dlya funktsii dvukh peremennykh s pogransloinoi sostavlyayuschei”, Vychislitelnye tekhnologii, 13:3 (2008), 45–53
[30] G.I. Shishkin, L.P. Shishkina, Difference methods for singular perturbation problems, Chapman and HALL/CRC, Boca Raton, 2009
[31] G.I. Shishkin, Setochnaya approksimatsiya singulyarno vozmuschennykh ellipticheskikh i parabolicheskikh uravnenii, Doktorskaya dissertatsiya, IPM im. Keldysha, Moskva, 1990
[32] A.I. Zadorin, “Metod interpolyatsii na sguschayuscheisya setke dlya funktsii s pogransloinoi sostavlyayuschei”, Zhurnal vychisl. matem. i mat. fiziki, 48:9 (2008), 1673–1684
[33] G.I. Marchuk, V.V. Shaidurov, Povyshenie tochnosti reshenii raznostnykh skhem, Nauka, Moskva, 1979
[34] B.M. Bagaev, E.D. Karepova, V.V. Shaidurov, Setochnye metody resheniya zadach s pogranichnym sloem, Nauka, Novosibirsk, 2001
[35] G.I. Shishkin, “Metod Richardsona povysheniya tochnosti setochnykh reshenii singulyarno vozmuschennykh ellipticheskikh uravnenii konvektsii-diffuzii”, Izvestiya vysshikh uchebnykh zavedenii, matematika, 2006, no. 2, 57–71
[36] M.C. Natividad, M. Stynes, “Richardson extrapolation for a convection-diffusion problem using a Shishkin mesh”, Appl. Numer. Math., 45 (2003), 315–329