Interpolation of functions with the boundary layer components and its application in a two-grid method
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 8 (2011), pp. 247-267.

Voir la notice de l'article provenant de la source Math-Net.Ru

As known, elliptic equation with regular boundary layers can be solved using difference scheme on an uniform mesh or on a mesh, dense in boundary layers. In both cases we have to solve a linear system of equations by iterations. We can reduce a number of iterations, if we preliminarily solve a problem on a coarse mesh. In this case we need to interpolate the mesh solution from a coarse mesh to a fine mesh. In a case of the uniform mesh we construct interpolations, fitted to the boundary layer components. We prove that in a case of Shishkin mesh the polynomial interpolation has the property of an uniform accuracy and may be used in a two-grid method.
Keywords: boundary layer, elliptic problem, two-grid method.
Mots-clés : nonpolynomial interpolation
@article{SEMR_2011_8_a20,
     author = {A. I. Zadorin and N. A. Zadorin},
     title = {Interpolation of functions with the boundary layer components and its application in a two-grid method},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {247--267},
     publisher = {mathdoc},
     volume = {8},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2011_8_a20/}
}
TY  - JOUR
AU  - A. I. Zadorin
AU  - N. A. Zadorin
TI  - Interpolation of functions with the boundary layer components and its application in a two-grid method
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2011
SP  - 247
EP  - 267
VL  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2011_8_a20/
LA  - ru
ID  - SEMR_2011_8_a20
ER  - 
%0 Journal Article
%A A. I. Zadorin
%A N. A. Zadorin
%T Interpolation of functions with the boundary layer components and its application in a two-grid method
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2011
%P 247-267
%V 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2011_8_a20/
%G ru
%F SEMR_2011_8_a20
A. I. Zadorin; N. A. Zadorin. Interpolation of functions with the boundary layer components and its application in a two-grid method. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 8 (2011), pp. 247-267. http://geodesic.mathdoc.fr/item/SEMR_2011_8_a20/

[1] N.S. Bakhvalov, “K optimizatsii metodov resheniya kraevykh zadach pri nalichii pogranichnogo sloya”, Zhurnal vychisl. matem. i mat. fiziki, 9:4 (1969), 841–890

[2] G.I. Shishkin, Setochnye approksimatsii singulyarno vozmuschennykh ellipticheskikh i parabolicheskikh uravnenii, UrO RAN, Ekaterinburg, 1992

[3] J.J.H. Miller, E. O'Riordan, G.I. Shishkin, Fitted numerical methods for singular perturbation problems, World Scientific, Singapore, 1996

[4] Yu.I. Shokin, V.D. Liseikin, Yu.V. Likhanova, Raznostnye setki i koordinatnye preobrazovaniya dlya chislennogo resheniya singulyarno vozmuschennykh zadach, Nauka, Novosibirsk, 2007

[5] H.G. Roos, M. Stynes, L. Tobiska, Numerical methods for singularly perturbed differential equations, convection-diffusion and flow problems, Springer, Berlin, 2008

[6] A.M. Ilin, “Raznostnaya skhema dlya differentsialnogo uravneniya s malym parametrom pri starshei proizvodnoi”, Matem. zametki, 6:2 (1969), 237–248

[7] K.V. Emelyanov, “Raznostnaya skhema dlya trekhmernogo ellipticheskogo uravneniya s malym parametrom pri starshei proizvodnoi”, Kraevye zadachi dlya uravnenii matematicheskoi fiziki, UrO RAN, Ekaterinburg, 1973, 30–42

[8] A.A. Samarskii, E.S. Nikolaev, Metody resheniya setochnykh uravnenii, Nauka, Moskva, 1978

[9] V.P. Ilin, Metody konechnykh raznostei i konechnykh ob'emov dlya ellipticheskikh uravnenii, IVM i MG SO RAN, Novosibirsk, 2001

[10] R.P. Fedorenko, “O skorosti skhodimosti odnogo iteratsionnogo protsessa”, Zhurnal vychisl. matem. i mat. fiziki, 4:3 (1964), 221–233

[11] N.S. Bakhvalov, “O skhodimosti odnogo relaksatsionnogo metoda pri estestvennykh ogranicheniyakh na ellipticheskii operator”, Zhurnal vychisl. matem. i mat. fiziki, 6:5 (1966), 861–883

[12] A. Brandt, “Multi-level adaptive solutions to boundary value problems”, Math. Comput., 31 (1977), 333–390

[13] W. Hackbusch, Multi-grid methods and applications, Springer, Berlin, 1985

[14] V.V. Shaidurov, Mnogosetochnye metody konechnykh elementov, Nauka, Moskva, 1989

[15] R.P. Fedorenko, Vvedenie v vychislitelnuyu fiziku, MFTI, Moskva, 1994

[16] W. Hackbusch, T. Probst, “Downwind Gauss-Seidel smoothing for convection dominated problems”, Numer. Linear Algebra Appl., 4 (1997), 85–102

[17] M.A. Olshanskii, “Analiz mnogosetochnogo metoda dlya uravnenii konvektsii-diffuzii s kraevymi usloviyami Dirikhle”, Zhurnal vychisl. matem. i mat. fiziki, 44:8 (2004), 1462–1491

[18] L.A. Krukier, G.V. Muratova, “Reshenie statsionarnoi zadachi konvektsii-diffuzii s preobladayuschei konvektsiei mnogosetochnym metodom so spetsialnymi sglazhivatelyami”, Matem. modelirovanie, 18:5 (2006), 63–72

[19] J. Xu, “A novel two-grid method for semilinear elliptic equation”, SIAM J. Sci. Comput., 15 (1994), 231–237

[20] O. Axelsson, W. Layton, “A two-level discretization of nonlinear boundary value problems”, SIAM J. Numer. Anal., 33 (1996), 2359–2374

[21] Xiaoxia Dai, Xiaoliang Cheng, “A two-grid method based on Newton iteration for the Navier-Stokes equations”, Journal of Comp. and Appl. Math., 220:1–2 (2008), 566–573

[22] L.G. Vulkov, A.I. Zadorin, “Two-grid interpolation algorithms for difference schemes of exponential type for semilinear diffusion convection-dominated equations”, American Institute of Physics, Conference proceedings, 1067, 2008, 284–292

[23] L.G. Vulkov, A.I. Zadorin, “Two-grid algorithms for an ordinary second order equation with exponential boundary layer in the solution”, International Journal of Numerical Analysis and Modeling, 7:3 (2010), 580–592

[24] A.I. Zadorin, “Metod interpolyatsii dlya zadachi s pogranichnym sloem”, Sibirskii zhurnal vychisl. matematiki, 10:3 (2007), 267–275

[25] I.T. Angelova, L.G. Vulkov, “A two-grid method on layer-adapted meshes for a semilinear 2D reaction-diffusion problem”, Lect. Notes in Computer Science, 5910, Berlin, 2009, 703–710

[26] Yu.S. Zavyalov, B.I. Kvasov , V.L. Miroshnichenko, Metody splain-funktsii, Nauka, Moskva, 1980

[27] A.I. Zadorin, “Interpolation Method for a Function with a Singular Component”, Lect. Notes in Computer Science, 5434, Berlin, 2009, 612–619

[28] A.I. Zadorin, N.A. Zadorin, “Splain-interpolyatsiya na ravnomernoi setke funktsii s pogransloinoi sostavlyayuschei”, Zhurnal vychisl. matem. i mat. fiziki, 50:2 (2010), 221–233

[29] A.I. Zadorin, “Metod interpolyatsii dlya funktsii dvukh peremennykh s pogransloinoi sostavlyayuschei”, Vychislitelnye tekhnologii, 13:3 (2008), 45–53

[30] G.I. Shishkin, L.P. Shishkina, Difference methods for singular perturbation problems, Chapman and HALL/CRC, Boca Raton, 2009

[31] G.I. Shishkin, Setochnaya approksimatsiya singulyarno vozmuschennykh ellipticheskikh i parabolicheskikh uravnenii, Doktorskaya dissertatsiya, IPM im. Keldysha, Moskva, 1990

[32] A.I. Zadorin, “Metod interpolyatsii na sguschayuscheisya setke dlya funktsii s pogransloinoi sostavlyayuschei”, Zhurnal vychisl. matem. i mat. fiziki, 48:9 (2008), 1673–1684

[33] G.I. Marchuk, V.V. Shaidurov, Povyshenie tochnosti reshenii raznostnykh skhem, Nauka, Moskva, 1979

[34] B.M. Bagaev, E.D. Karepova, V.V. Shaidurov, Setochnye metody resheniya zadach s pogranichnym sloem, Nauka, Novosibirsk, 2001

[35] G.I. Shishkin, “Metod Richardsona povysheniya tochnosti setochnykh reshenii singulyarno vozmuschennykh ellipticheskikh uravnenii konvektsii-diffuzii”, Izvestiya vysshikh uchebnykh zavedenii, matematika, 2006, no. 2, 57–71

[36] M.C. Natividad, M. Stynes, “Richardson extrapolation for a convection-diffusion problem using a Shishkin mesh”, Appl. Numer. Math., 45 (2003), 315–329