Small perturbations of two-phase thermofluid in pores: linearization procedure and equations of isothermal microstructure
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 8 (2011), pp. 127-158.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the most general dynamical model describing the joint motion of a heat-conductive elastic porous body and a two-phase heat-conductive Newtonian viscous compressible fluid. We assume that the fluid fills in the whole porous space. Since the fluid in pores and the solid composing the pore space are distinguished and at the same time we think of pores that they have very small diameters but their aggregate capacity is significant with the respect to the entire fluid-solid bulk, the considered model corresponds to microstructure. In the present article the linearization procedure is fulfilled on a natural rest state by means of the classical formalism. On the base of the obtained linearized model, a simplified isothermal formulation is set up and the existence and uniqueness theory is built for it. The proofs are based on the classical methods in the theory of evolutionary partial differential equations.
Keywords: elastic solid, two-phase compressible viscous fluid, linearization, existence and uniqueness theory, generalized solutions.
Mots-clés : Rakhmatulin's scheme
@article{SEMR_2011_8_a11,
     author = {S. A. Sazhenkov and E. V. Sazhenkova},
     title = {Small perturbations of two-phase thermofluid in pores: linearization procedure and equations of isothermal microstructure},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {127--158},
     publisher = {mathdoc},
     volume = {8},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2011_8_a11/}
}
TY  - JOUR
AU  - S. A. Sazhenkov
AU  - E. V. Sazhenkova
TI  - Small perturbations of two-phase thermofluid in pores: linearization procedure and equations of isothermal microstructure
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2011
SP  - 127
EP  - 158
VL  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2011_8_a11/
LA  - en
ID  - SEMR_2011_8_a11
ER  - 
%0 Journal Article
%A S. A. Sazhenkov
%A E. V. Sazhenkova
%T Small perturbations of two-phase thermofluid in pores: linearization procedure and equations of isothermal microstructure
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2011
%P 127-158
%V 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2011_8_a11/
%G en
%F SEMR_2011_8_a11
S. A. Sazhenkov; E. V. Sazhenkova. Small perturbations of two-phase thermofluid in pores: linearization procedure and equations of isothermal microstructure. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 8 (2011), pp. 127-158. http://geodesic.mathdoc.fr/item/SEMR_2011_8_a11/

[1] M. Massoud, Engineering Thermofluids. Thermodynamics, Fluid Mechanics, and Heat Transfer, Springer, Berlin, 2005

[2] R.I. Nigmatulin, Dynamics of Multiphase Systems, v. 1, Hemisphere, Washington, 1990

[3] Cours de Mécanique des Milieux Continus, v. 1, Théorie générale, Masson et Cie, Paris, 1973 (French) | Zbl

[4] S.A. Sazhenkov, “Effective thermoviscoelasticity of a saturated porous ground”, Vestnik, Quart. J. of Novosibirsk State Univ., Series: Math. mech. and informatics, 8:2 (2008), 105–129 | MR

[5] A. Meirmanov, “Double porosity models for liquid filtration in incompressible poroelastic media”, Mathematical Models and Methods in Applied Sciences, 20 (2010), 635–659 | DOI | MR | Zbl

[6] A.M. Meirmanov, “A description of seismic acoustic wave propagation in porous media via homogenization”, SIAM J. Math. Anal., 40:3 (2008), 1272–1289 | DOI | MR | Zbl

[7] R.P. Gilbert, A. Mikelić, “Homogenizing the acoustic properties of the seabed: Part I”, Nonlinear Anal., 40 (2000), 185–212 | DOI | MR | Zbl

[8] T. Clopeau, J.L. Ferrin, R.P. Gilbert, A. Mikelić, “Homogenizing the acoustic properties of the seabed: Part II”, Math. Comp. Modelling, 33 (2001), 821–841 | DOI | MR | Zbl

[9] R.A. Rakhmatulin, “Foundations of gas dynamics of self-penetrative motions of continuous media”, PMM, 20:2 (1956) (Russian)

[10] L.D. Landau, E.M. Lifshitz, Theory of Elasticity: Course of Theoretical Physics, v. 7, Butterworth–Heinemann, Oxford, 1995

[11] L.V. Ovsiannikov, Introduction to Mechanics of Continuous Media, Part 2, Novosibirsk State University, Novosibirsk, 1977 (Russian)

[12] Bear J., Dynamics of Fluids in Porous Media, Dover Publications, New York, 1988 | Zbl

[13] L.D. Landau, E.M. Lifshitz, Fluid Mechanics: Course of Theoretical Physics, v. 6, Butterworth–Heinemann, Oxford, 1995

[14] L.I. Sedov, Mechanics of Continuous Media, v. 1, World Scientific, Singapore, 1997 | MR | Zbl

[15] S.N. Antontsev, A.V. Kazhikhov, V.N. Monakhov, Boundary Value Problems in Mechanics of Nonhomogeneous Fluids, North-Holland, Amsterdam, 1990 | MR | Zbl

[16] O.A. Ladyzhenskaya, The Boundary Value Problems of Mathematical Physics, Applied Mathematical Sciences, 49, Springer, New York, 1985 | MR | Zbl

[17] A.M. Meirmanov, S.A. Sazhenkov, “Generalized solutions to linearized equations of thermoelastic solid and viscous thermofluid”, Electronic Journal of Differential Equations, 2007:41 (2007), 1–29 | MR

[18] Yu.G. Reshetnyak, Stability Theorems in Geometry and Analysis, Mathematics and Its Appl., 304, Kluwer, Dordrecht, 1994 | MR | Zbl

[19] J. Warga, Optimal Control of Differential and Functional Equations, Academic Press, New York and London, 1972 | MR | Zbl

[20] Quelques Méthodes de Résolution des Problémes aux Limites Non Linéaire, Dunod Gauthier–Villars, Paris, 1969 (French) | Zbl