Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2011_8_a11, author = {S. A. Sazhenkov and E. V. Sazhenkova}, title = {Small perturbations of two-phase thermofluid in pores: linearization procedure and equations of isothermal microstructure}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {127--158}, publisher = {mathdoc}, volume = {8}, year = {2011}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2011_8_a11/} }
TY - JOUR AU - S. A. Sazhenkov AU - E. V. Sazhenkova TI - Small perturbations of two-phase thermofluid in pores: linearization procedure and equations of isothermal microstructure JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2011 SP - 127 EP - 158 VL - 8 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2011_8_a11/ LA - en ID - SEMR_2011_8_a11 ER -
%0 Journal Article %A S. A. Sazhenkov %A E. V. Sazhenkova %T Small perturbations of two-phase thermofluid in pores: linearization procedure and equations of isothermal microstructure %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2011 %P 127-158 %V 8 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2011_8_a11/ %G en %F SEMR_2011_8_a11
S. A. Sazhenkov; E. V. Sazhenkova. Small perturbations of two-phase thermofluid in pores: linearization procedure and equations of isothermal microstructure. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 8 (2011), pp. 127-158. http://geodesic.mathdoc.fr/item/SEMR_2011_8_a11/
[1] M. Massoud, Engineering Thermofluids. Thermodynamics, Fluid Mechanics, and Heat Transfer, Springer, Berlin, 2005
[2] R.I. Nigmatulin, Dynamics of Multiphase Systems, v. 1, Hemisphere, Washington, 1990
[3] Cours de Mécanique des Milieux Continus, v. 1, Théorie générale, Masson et Cie, Paris, 1973 (French) | Zbl
[4] S.A. Sazhenkov, “Effective thermoviscoelasticity of a saturated porous ground”, Vestnik, Quart. J. of Novosibirsk State Univ., Series: Math. mech. and informatics, 8:2 (2008), 105–129 | MR
[5] A. Meirmanov, “Double porosity models for liquid filtration in incompressible poroelastic media”, Mathematical Models and Methods in Applied Sciences, 20 (2010), 635–659 | DOI | MR | Zbl
[6] A.M. Meirmanov, “A description of seismic acoustic wave propagation in porous media via homogenization”, SIAM J. Math. Anal., 40:3 (2008), 1272–1289 | DOI | MR | Zbl
[7] R.P. Gilbert, A. Mikelić, “Homogenizing the acoustic properties of the seabed: Part I”, Nonlinear Anal., 40 (2000), 185–212 | DOI | MR | Zbl
[8] T. Clopeau, J.L. Ferrin, R.P. Gilbert, A. Mikelić, “Homogenizing the acoustic properties of the seabed: Part II”, Math. Comp. Modelling, 33 (2001), 821–841 | DOI | MR | Zbl
[9] R.A. Rakhmatulin, “Foundations of gas dynamics of self-penetrative motions of continuous media”, PMM, 20:2 (1956) (Russian)
[10] L.D. Landau, E.M. Lifshitz, Theory of Elasticity: Course of Theoretical Physics, v. 7, Butterworth–Heinemann, Oxford, 1995
[11] L.V. Ovsiannikov, Introduction to Mechanics of Continuous Media, Part 2, Novosibirsk State University, Novosibirsk, 1977 (Russian)
[12] Bear J., Dynamics of Fluids in Porous Media, Dover Publications, New York, 1988 | Zbl
[13] L.D. Landau, E.M. Lifshitz, Fluid Mechanics: Course of Theoretical Physics, v. 6, Butterworth–Heinemann, Oxford, 1995
[14] L.I. Sedov, Mechanics of Continuous Media, v. 1, World Scientific, Singapore, 1997 | MR | Zbl
[15] S.N. Antontsev, A.V. Kazhikhov, V.N. Monakhov, Boundary Value Problems in Mechanics of Nonhomogeneous Fluids, North-Holland, Amsterdam, 1990 | MR | Zbl
[16] O.A. Ladyzhenskaya, The Boundary Value Problems of Mathematical Physics, Applied Mathematical Sciences, 49, Springer, New York, 1985 | MR | Zbl
[17] A.M. Meirmanov, S.A. Sazhenkov, “Generalized solutions to linearized equations of thermoelastic solid and viscous thermofluid”, Electronic Journal of Differential Equations, 2007:41 (2007), 1–29 | MR
[18] Yu.G. Reshetnyak, Stability Theorems in Geometry and Analysis, Mathematics and Its Appl., 304, Kluwer, Dordrecht, 1994 | MR | Zbl
[19] J. Warga, Optimal Control of Differential and Functional Equations, Academic Press, New York and London, 1972 | MR | Zbl
[20] Quelques Méthodes de Résolution des Problémes aux Limites Non Linéaire, Dunod Gauthier–Villars, Paris, 1969 (French) | Zbl