Isospectral finite simple groups
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 7 (2010), pp. 111-114.

Voir la notice de l'article provenant de la source Math-Net.Ru

The spectrum of a finite group is the set of its element orders. Two groups are called isospectral if their spectra coincide. It is known that $PSp_6(2)$ is isospectral to $P\Omega^+_8(2)$ and $\Omega_7(3)$ is isospectral to $P\Omega^+_8(3)$. In the present paper we prove that there are no other pairs of non-isomorphic isospectral finite simple groups. In particular, we prove that there are no three finite simple groups with the same spectrum.
@article{SEMR_2010_7_a9,
     author = {A. A. Buturlakin},
     title = {Isospectral finite simple groups},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {111--114},
     publisher = {mathdoc},
     volume = {7},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2010_7_a9/}
}
TY  - JOUR
AU  - A. A. Buturlakin
TI  - Isospectral finite simple groups
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2010
SP  - 111
EP  - 114
VL  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2010_7_a9/
LA  - en
ID  - SEMR_2010_7_a9
ER  - 
%0 Journal Article
%A A. A. Buturlakin
%T Isospectral finite simple groups
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2010
%P 111-114
%V 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2010_7_a9/
%G en
%F SEMR_2010_7_a9
A. A. Buturlakin. Isospectral finite simple groups. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 7 (2010), pp. 111-114. http://geodesic.mathdoc.fr/item/SEMR_2010_7_a9/

[1] V. D. Mazurov, “Characterization of finite groups by sets of elements orders”, Algebra and Logic, 36:1 (1997), 23–32 | DOI | MR | Zbl

[2] W. J. Shi and C. Y. Tang, “A characterization of some orthogonal groups”, Progr. Nat. Sc., 7:2 (1997), 155–162 | MR | Zbl

[3] E. I. Khukhro and V. D. Mazurov (eds.), “Unsolved problems in group theory”, The Kourovka notebook, 16th edition, Sobolev Institute of Mathematics, Novosibirsk, 2006 | MR

[4] V. D. Mazurov and W. J. Shi, “A note to the characterization of sporadic simple groups”, Algebra Colloq., 5:3 (1998), 285–288 | MR | Zbl

[5] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, and R. A. Wilson, Atlas of finite groups, Claredon Press, Oxford, 1985 | MR | Zbl

[6] A. V. Zavarnitsine, “Finite simple groups with narrow prime spectrum”, Siberian Electronic Mathamatical Reports, 6 (2009), 1–12 http://semr.math.nsc.ru/v6/p1-12.pdf | MR

[7] A. A. Buturlakin, Spectra of finite classical groups and isospectral simple groups, Preprint No. 232, Sobolev Insitute of Mathematics, Novosibirsk, 2009 (in Russian)

[8] A. A. Buturlakin, “Spectra of finite linear and unitary groups”, Algebra and Logic, 47:2 (2008), 91–99 | DOI | MR | Zbl

[9] A. V. Zavarnitsin, “Recognition of alternating groups of degrees $r+1$ and $r+2$ for prime $r$ and of the group of degree $16$ by their element order sets”, Algebra and Logic, 39:6 (2000), 370–377 | DOI | MR | Zbl

[10] A. V. Vasil$'$ev and E. P. Vdovin, “An adjacency criterion in the prime graph of a finite simple group”, Algebra and Logic, 44:6 (2005), 381–406 | DOI | MR | Zbl

[11] A. V. Vasil'ev and E. P. Vdovin, Cocliques of maximal size in the prime graph of a finite simple group, Preprint No. 225, Sobolev Insitute of Mathematics, Novosibirsk, 2009 See also http://arxiv.org/abs/0905.1164

[12] A. S. Kondrat'ev and V. D. Mazurov, “Recognition of alternating groups of prime degree from the orders of their elements”, Siberian Math. J., 41:2 (2000), 294–302 | DOI | MR

[13] W. M. Kantor and A. Seress, “Prime power graphs of groups of Lie type”, J. Algebra, 247 (2002), 370–434 | DOI | MR | Zbl

[14] M. A. Grechkoseeva, “On the difference between the spectra of the simple groups $B_n(q)$ and $C_n(q)$”, Siberian Math. J., 48:1 (2007), 73–75 | DOI | MR | Zbl

[15] W. J. Shi, “Pure quantitative characterization of finite simple groups”, Front. Math. China, 2:1 (2007), 123–125 | DOI | MR | Zbl

[16] A. A. Buturlakin and M. A. Grechkoseeva, “The cyclic structure of maximal tori of the finite classical groups”, Algebra and Logic, 46:2 (2007), 73–89 | DOI | MR | Zbl