Isospectral finite simple groups
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 7 (2010), pp. 111-114

Voir la notice de l'article provenant de la source Math-Net.Ru

The spectrum of a finite group is the set of its element orders. Two groups are called isospectral if their spectra coincide. It is known that $PSp_6(2)$ is isospectral to $P\Omega^+_8(2)$ and $\Omega_7(3)$ is isospectral to $P\Omega^+_8(3)$. In the present paper we prove that there are no other pairs of non-isomorphic isospectral finite simple groups. In particular, we prove that there are no three finite simple groups with the same spectrum.
@article{SEMR_2010_7_a9,
     author = {A. A. Buturlakin},
     title = {Isospectral finite simple groups},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {111--114},
     publisher = {mathdoc},
     volume = {7},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2010_7_a9/}
}
TY  - JOUR
AU  - A. A. Buturlakin
TI  - Isospectral finite simple groups
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2010
SP  - 111
EP  - 114
VL  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2010_7_a9/
LA  - en
ID  - SEMR_2010_7_a9
ER  - 
%0 Journal Article
%A A. A. Buturlakin
%T Isospectral finite simple groups
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2010
%P 111-114
%V 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2010_7_a9/
%G en
%F SEMR_2010_7_a9
A. A. Buturlakin. Isospectral finite simple groups. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 7 (2010), pp. 111-114. http://geodesic.mathdoc.fr/item/SEMR_2010_7_a9/