Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2010_7_a8, author = {A. A. Gavryushkina}, title = {On automatic and decidable linear orderings}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {100--110}, publisher = {mathdoc}, volume = {7}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2010_7_a8/} }
A. A. Gavryushkina. On automatic and decidable linear orderings. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 7 (2010), pp. 100-110. http://geodesic.mathdoc.fr/item/SEMR_2010_7_a8/
[1] S. S. Goncharov, Yu. L. Ershov, Konstruktivnye modeli, Nauchnaya kniga, Novosibirsk, 1999
[2] S. S. Goncharov, “Silnaya konstruktiviziruemost odnorodnykh modelei”, Algebra i logika, 17:4 (1978), 363–388 | MR | Zbl
[3] G. Keisler, Ch. Ch. Chen, Teoriya modelei, Mir, Moskva, 1977 | MR
[4] A. T. Nurtazin, “Silnye i slabye konstruktivizatsii i vychislimye semeistva”, Algebra i logika, 13:3 (1974), 311–323 | MR | Zbl
[5] A. A. Revenko, “Avtoustoichivost avtomatnykh predstavlenii ordinalov i lineinykh poryadkov nizkogo ranga”, Vestnik NGU, seriya Matematika, 8:4 (2008), 76–88
[6] M. G. Peretyatkin, “Kriterii silnoi konstruktiviziruemosti odnorodnoi modeli”, Algebra i logika, 17:4 (1978), 436–454 | MR
[7] C. J. Ash, J. F. Knight, Computable Structures and the Hyperarithmetical Hierarchy, Studies in Logic and the Foundations of Mathematics, 144, Elsevier, 2000 | MR | Zbl
[8] V. Barany, Automatic Presentations of Infinite Structures, PhD Thesis, RWTH Aachen, 2007
[9] A. Blumensath, E. Grädel, “Finite presentations of infinite structures: Automata and Interpretations”, Theory of Computing Systems, 37 (2004), 641–674 | DOI | MR | Zbl
[10] C. Delhomme, Non-automaticity of $\omega^\omega$, manuscript, 2001 | Zbl
[11] R. G. Downey, “Computability Theory and Linear Orderings”, Handbook of Recursive Mathematics, chapter 14, v. 2, Studies in Logic and the Foundations of Mathematics, 139, Elsevier, 1998, 823–976 | MR | Zbl
[12] S. S. Goncharov, “Autostable Models and Algorithmic Dimentions”, Handbook of Recursive Mathematics, chapter 6, v. 1, Studies in Logic and the Foundations of Mathematics, 138, Elsevier, 1998, 261–287 | MR | Zbl
[13] B. Khoussainov, M. Minnes, “Model Theoretic Complexity of Automatic Structures”, Lecture Notes in Computer Science, 4978, 2008, 514–525 | MR | Zbl
[14] B. Khoussainov, M. Minnes and J. Liu, “Unary Automatic Graph”, Mathematical Structures in Computer Sciens, 19:1 (2008), 533–152 | MR
[15] B. Khoussainov, A. Nerode, “Automatic Presentations of Structures”, Lecture Notes in Computer Science, 960, 1995, 367–392 | MR
[16] B. Khoussainov, A. Nerode, “Open Questions in the Theory of Automatic Structures”, Bulleten of EATCS, 94 (2008), 181–204 | MR | Zbl
[17] B. Khoussainov, S. Rubin, F. Stephan, “Automatic Linear Orders and Trees”, ACM Transactions on Computational Logic, 6:4 (2005), 675–700 | DOI | MR
[18] C. H. Langford, “Theorems on Deducibility”, Annals of Mathematics, 28:2 (1927), 459–471 | MR | Zbl
[19] M. Minnes, Computability and complexity properties of automatic structures and their applications, PhD Thesis, Cornell University, 2008 | MR
[20] M. Moses, Recursive Properties of Isomorphism Types, PhD Thesis, Monash University, Clayton, Victoria, Australia, 1983
[21] M. Moses, “Recursive Linear Orderings with Recursive Successivities”, Annals of Pure and Appleing Logic, 27 (1984), 253–264 | DOI | MR | Zbl
[22] J. B. Remmel, “Recursively Categorical Linear Orderings”, Proceedings of American Mathematical Society, 83 (1981), 387–391 | MR | Zbl
[23] J. G. Rosenstein, Linear Orderings, Academic Press, 1982 | MR | Zbl
[24] S. Rubin, Automatic Structures, PhD Thesis, The University of Auckland, New Zealand, 2004
[25] S. Rubin, “Survey of automatic structures”, The Bulletin of Symbolic Logic, 14:2 (2008), 169–200 | DOI | MR