Dynamics of a~predator-prey model
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 7 (2010), pp. 87-99.

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct a global bifurcation diagram of the plane differential system $$ \begin{array}{l} \dot x=x(1-x)-xy/(a+x^2),\\ \dot y=y(\delta-\beta y/x),\\ x(t)>0,\, y(t)>0,\, a>0,\,\delta>0,\,\beta>0, \end{array} $$ which describes the predator-prey interaction.
Keywords: bifurcation diagram, predator-prey model.
@article{SEMR_2010_7_a7,
     author = {E. P. Volokitin and S. A. Treskov},
     title = {Dynamics of a~predator-prey model},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {87--99},
     publisher = {mathdoc},
     volume = {7},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2010_7_a7/}
}
TY  - JOUR
AU  - E. P. Volokitin
AU  - S. A. Treskov
TI  - Dynamics of a~predator-prey model
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2010
SP  - 87
EP  - 99
VL  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2010_7_a7/
LA  - ru
ID  - SEMR_2010_7_a7
ER  - 
%0 Journal Article
%A E. P. Volokitin
%A S. A. Treskov
%T Dynamics of a~predator-prey model
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2010
%P 87-99
%V 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2010_7_a7/
%G ru
%F SEMR_2010_7_a7
E. P. Volokitin; S. A. Treskov. Dynamics of a~predator-prey model. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 7 (2010), pp. 87-99. http://geodesic.mathdoc.fr/item/SEMR_2010_7_a7/

[1] Li Y., Xiao D., “Bifurcanions of a predator-prey system of Holing and Leslie types”, Chaos, Solitons and Fractals, 34 (2007), 606–620 | DOI | MR | Zbl

[2] Li Y., Xiao D., “Global dynamics and Hopf bifurcation of a mite predator-prey interaction model” (to appear)

[3] Volokitin E. P., Treskov S. A., “O periodicheskikh resheniyakh odnoi sistemy “khischnik-zhertva””, Sibirskie elektronnye matematicheskie izvestiya, 5 (2008), 251–254 | MR

[4] Beresovskaya F. S., Novozhilov A. S., Karev G. P., “Population models with singular equlibrium”, Math. Biosciences, 208 (2007), 270–294 | DOI

[5] Bautin N. N., Leontovich E. A., Metody i priemy kachestvennogo issledovaniya dinamicheskikh sistem na ploskosti, Nauka, Moskva, 1990 | MR | Zbl

[6] Kuznetsov Y. A., “Numerical normalization techniques for all codim 2 bifurcations of equilibria in ODE's”, SIAM J. Numer. Anal., 30:4 (1999), 1104–1124 | DOI | MR

[7] Khibnik A. I., Krauskopf B., Rousseau C., “Global study of a family of cubic Liénard equations”, Nonlinearity, 11:6 (1997), 1505–1519 | DOI | MR

[8] Bazykin A. D., Kuznetsov Yu. A., Khibnik A. I., Portrety bifurkatsii, Znanie, Moskva, 1989 | MR | Zbl

[9] Nemytskii V. V., Stepanov V. V., Kachestvennaya teoriya differentsialnykh uravnenii, Gosudarstvennoe izdatelstvo tekhniko-teoreticheskoi literatury, Moskva, Leningrad, 1949

[10] Volokitin E. P., Treskov S. A., “O lyapunovskikh velichinakh slozhnogo fokusa dinamicheskoi sistemy na ploskosti”, Izvestiya RAEN. Matematika. Matematicheskoe modelirovanie. Informatika i upravlenie, 1:1 (1997), 59–72 | MR | Zbl

[11] Bykov V. I., Volokitin E. P., Treskov S. A., “Matematicheskaya model protochnogo reaktora idealnogo peremeshivaniya: parametricheskii analiz”, Sib. zhurnal industrialnoi matematiki, 1:1 (1998), 57–76 | MR | Zbl

[12] Volokitin E. P., “Parametricheskii analiz dinamicheskoi modeli protsessa kristallizatsii”, Sib. zhurnal industrialnoi matematiki, 3:2 (2000), 35–42 | MR