Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2010_7_a7, author = {E. P. Volokitin and S. A. Treskov}, title = {Dynamics of a~predator-prey model}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {87--99}, publisher = {mathdoc}, volume = {7}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2010_7_a7/} }
E. P. Volokitin; S. A. Treskov. Dynamics of a~predator-prey model. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 7 (2010), pp. 87-99. http://geodesic.mathdoc.fr/item/SEMR_2010_7_a7/
[1] Li Y., Xiao D., “Bifurcanions of a predator-prey system of Holing and Leslie types”, Chaos, Solitons and Fractals, 34 (2007), 606–620 | DOI | MR | Zbl
[2] Li Y., Xiao D., “Global dynamics and Hopf bifurcation of a mite predator-prey interaction model” (to appear)
[3] Volokitin E. P., Treskov S. A., “O periodicheskikh resheniyakh odnoi sistemy “khischnik-zhertva””, Sibirskie elektronnye matematicheskie izvestiya, 5 (2008), 251–254 | MR
[4] Beresovskaya F. S., Novozhilov A. S., Karev G. P., “Population models with singular equlibrium”, Math. Biosciences, 208 (2007), 270–294 | DOI
[5] Bautin N. N., Leontovich E. A., Metody i priemy kachestvennogo issledovaniya dinamicheskikh sistem na ploskosti, Nauka, Moskva, 1990 | MR | Zbl
[6] Kuznetsov Y. A., “Numerical normalization techniques for all codim 2 bifurcations of equilibria in ODE's”, SIAM J. Numer. Anal., 30:4 (1999), 1104–1124 | DOI | MR
[7] Khibnik A. I., Krauskopf B., Rousseau C., “Global study of a family of cubic Liénard equations”, Nonlinearity, 11:6 (1997), 1505–1519 | DOI | MR
[8] Bazykin A. D., Kuznetsov Yu. A., Khibnik A. I., Portrety bifurkatsii, Znanie, Moskva, 1989 | MR | Zbl
[9] Nemytskii V. V., Stepanov V. V., Kachestvennaya teoriya differentsialnykh uravnenii, Gosudarstvennoe izdatelstvo tekhniko-teoreticheskoi literatury, Moskva, Leningrad, 1949
[10] Volokitin E. P., Treskov S. A., “O lyapunovskikh velichinakh slozhnogo fokusa dinamicheskoi sistemy na ploskosti”, Izvestiya RAEN. Matematika. Matematicheskoe modelirovanie. Informatika i upravlenie, 1:1 (1997), 59–72 | MR | Zbl
[11] Bykov V. I., Volokitin E. P., Treskov S. A., “Matematicheskaya model protochnogo reaktora idealnogo peremeshivaniya: parametricheskii analiz”, Sib. zhurnal industrialnoi matematiki, 1:1 (1998), 57–76 | MR | Zbl
[12] Volokitin E. P., “Parametricheskii analiz dinamicheskoi modeli protsessa kristallizatsii”, Sib. zhurnal industrialnoi matematiki, 3:2 (2000), 35–42 | MR