Topological objects in category $EQU$
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 7 (2010), pp. 76-86.

Voir la notice de l'article provenant de la source Math-Net.Ru

We give a criterion for equivalence between equilogical and topological spaces. This enables us to prove that a series of interesting categories of topological spaces are complete subcartesian closed subcategories of equilogical spaces.
@article{SEMR_2010_7_a6,
     author = {Yu. L. Ershov},
     title = {Topological objects in category $EQU$},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {76--86},
     publisher = {mathdoc},
     volume = {7},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2010_7_a6/}
}
TY  - JOUR
AU  - Yu. L. Ershov
TI  - Topological objects in category $EQU$
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2010
SP  - 76
EP  - 86
VL  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2010_7_a6/
LA  - ru
ID  - SEMR_2010_7_a6
ER  - 
%0 Journal Article
%A Yu. L. Ershov
%T Topological objects in category $EQU$
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2010
%P 76-86
%V 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2010_7_a6/
%G ru
%F SEMR_2010_7_a6
Yu. L. Ershov. Topological objects in category $EQU$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 7 (2010), pp. 76-86. http://geodesic.mathdoc.fr/item/SEMR_2010_7_a6/

[1] D. S. Scott, A new category?, preprint, Carnegie Mellon University, 1998

[2] G. Gierz, K. H. Hofmann, K. Keimel, J. D. Lawson, M. Mislove, D. S. Scott, Continuons Lattices and Domoins, Encyclopedia of Vfthematics and its applications, 93, Cambridge University Press, 2003 | MR | Zbl

[3] D. S. Scott, “Continuons lattices”, Toposes, Algebraic Geometry and Logic, Lecture Notes Math., 274, ed. F. Lawvere, Springer Verlag, 1972, 97–136 | MR

[4] Yu. L. Ershov, “Theory of domains and nearby”, Formal Methods in Programming and Their Applicatiions, Lecture Notes Computer Science, 735, eds. D. Bjorner, M. Broy and I. Pottosin, Springer Verlag, 1993, 1–7 | MR

[5] Yu. L. Ershov, “The bonnded-complete hull of an $\alpha$-space”, Theor. Comp. Science, 175 (1997), 3–13 | DOI | MR | Zbl

[6] A. Jung, Cartesian Closed Categorien of Domains, CWI Tract, 66, Stichting Math. Centrum, Amsterdam, 1989 | MR

[7] Yu. L. Ershov, “Teoriya $A$-prostranstv”, Algebra i logika, 12:4 (1973), 369–416 | MR | Zbl

[8] B. J. Day, G. M. Kelly, “Topological quotients maps preserved pyllbacks or products”, Proc. Camb. Phil. Soc., 67 (1970), 553–558 | DOI | MR | Zbl

[9] M. Escardo, J. Lawson, A. Simpson, “Comparing cartesian closed categories of (core) compactly generated Spaces”, Topology and Appl., 143:1–3 (2004), 109–145 | MR

[10] M. Menni, A. K. Simpson, “Topological and limit space subcategories of countably bosed equilogical Spaces”, Math. Str. in Comp. Sci., 12:6 (2002), 739–770 | MR | Zbl

[11] I. Battenfeld, M. Schröder, A. Simpson, “Compactly generated domain theory”, Festschrift for Klaus Keimel, Math. Str. in Comp. Sci., 16:3 (2006), 141–161 | DOI | MR | Zbl