Topological objects in category $EQU$
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 7 (2010), pp. 76-86

Voir la notice de l'article provenant de la source Math-Net.Ru

We give a criterion for equivalence between equilogical and topological spaces. This enables us to prove that a series of interesting categories of topological spaces are complete subcartesian closed subcategories of equilogical spaces.
@article{SEMR_2010_7_a6,
     author = {Yu. L. Ershov},
     title = {Topological objects in category $EQU$},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {76--86},
     publisher = {mathdoc},
     volume = {7},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2010_7_a6/}
}
TY  - JOUR
AU  - Yu. L. Ershov
TI  - Topological objects in category $EQU$
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2010
SP  - 76
EP  - 86
VL  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2010_7_a6/
LA  - ru
ID  - SEMR_2010_7_a6
ER  - 
%0 Journal Article
%A Yu. L. Ershov
%T Topological objects in category $EQU$
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2010
%P 76-86
%V 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2010_7_a6/
%G ru
%F SEMR_2010_7_a6
Yu. L. Ershov. Topological objects in category $EQU$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 7 (2010), pp. 76-86. http://geodesic.mathdoc.fr/item/SEMR_2010_7_a6/