Keywords: perfect coloring, perfect code.
@article{SEMR_2010_7_a5,
author = {K. V. Vorobev and D. G. Fon-Der-Flaass},
title = {On perfect $2$-colorings of the hypercube},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {65--75},
year = {2010},
volume = {7},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SEMR_2010_7_a5/}
}
K. V. Vorobev; D. G. Fon-Der-Flaass. On perfect $2$-colorings of the hypercube. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 7 (2010), pp. 65-75. http://geodesic.mathdoc.fr/item/SEMR_2010_7_a5/
[1] D. G. Fon-Der-Flaass, “Sovershennye 2-raskraski giperkuba”, Sibirskii matematicheskii zhurnal, 48:4 (Iyul–avgust 2007), 923–930 | MR | Zbl
[2] M. Kholl, Kombinatorika, Mir, M., 1970, 64–79 | MR
[3] D. G. Fon-Der-Flaass, “A bound on correlation immunity”, Siberian Electronic Mathematical Reports, 4 (2007), 133–135 | MR | Zbl
[4] D. G. Fon-Der-Flaass, “Sovershennye 2-raskraski 12-mernogo kuba, dostigayuschie granitsy korrelyatsionnoi immunnosti”, Sibirskie Elektronnye Matematicheskie Izvestiya, 4 (2007), 292–295 | MR | Zbl
[5] Denis S. Krotov, Sergey V. Avgustinovich, “On the number of 1-perfect binary codes: a lower bound”, IEEE Trans. Inf. Theory, 54:4 (2008), 1760–1765 | DOI | MR
[6] K. V. Vorobev, “O chisle sovershennykh 2-raskrasok giperkuba”, Materialy XLVI Mezhdunarodnoi nauchnoi studencheskoi konferentsii “Student i nauchno-tekhnicheskii progress”: Matematika, Novosib. gos. un-t, Novosibirsk, 2008, 182