The increasing smoothness property of solutions to some hyperbolic problems in two independent variables
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 7 (2010), pp. 413-424.

Voir la notice de l'article provenant de la source Math-Net.Ru

The initial-boundary problems for first-order hyperbolic systems and for the wave equation are considered in the half-strip $\Pi=\{(x,t):0$, $t>0\}$. Boundary conditions which guarantee the increasing of smoothness of the solutions to the considered problems as $t$ grows are formulated.
Keywords: first-order hyperbolic systems on the plane, wave equation, initial-boundary problems, increasing smoothness of the solutions.
@article{SEMR_2010_7_a39,
     author = {N. A. Lyul'ko},
     title = {The increasing smoothness property of solutions to some hyperbolic problems in two independent variables},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {413--424},
     publisher = {mathdoc},
     volume = {7},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2010_7_a39/}
}
TY  - JOUR
AU  - N. A. Lyul'ko
TI  - The increasing smoothness property of solutions to some hyperbolic problems in two independent variables
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2010
SP  - 413
EP  - 424
VL  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2010_7_a39/
LA  - en
ID  - SEMR_2010_7_a39
ER  - 
%0 Journal Article
%A N. A. Lyul'ko
%T The increasing smoothness property of solutions to some hyperbolic problems in two independent variables
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2010
%P 413-424
%V 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2010_7_a39/
%G en
%F SEMR_2010_7_a39
N. A. Lyul'ko. The increasing smoothness property of solutions to some hyperbolic problems in two independent variables. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 7 (2010), pp. 413-424. http://geodesic.mathdoc.fr/item/SEMR_2010_7_a39/

[1] Abolinya V. E., Myshkis A. D., “A mixed problem for an almost linear hyperbolic system on the plane”, Mat. Sb., 50(92):4 (1960), 423–442 | MR | Zbl

[2] Myshkis A. D., Filimonov A. M., “Continuous solutions of hyperbolic systems of quasilinear equations in two independent variables”, Nonlinear Analysis and Nonlinear Differential Equations, Fizmatlit, Moscow, 2003, 337–351 (in Russian) | MR | Zbl

[3] Akramov T. A., Differential Equations and Some of Their Applications in Modeling of Physicochemical Processes, Bashkirsk. Univ., Ufa, 2000 (Russian)

[4] Vorobyeva E. V., Romanovskiy R. K., “Method of characteristics for hyperbolic boundary problems on a plane”, Siberian Math. J., 41:4 (2000), 531–540 | MR

[5] Rauch J., Read M., “Nonlinear microlocal analysis of semilinear hyperbolic systems in one space dimension”, Duke Math. J., 49:2 (1982), 397–475 | DOI | MR | Zbl

[6] Kmit I., “Classical solvability of nonlinear initial-boundary problems for first-order hyperbolic systems”, International Journal of Dynamic Systems and Differential Systems and Differential Equations, 1:3 (2008), 91–195 | MR

[7] Eltysheva N. A., “On qualitative properties of solutions to some hyperbolic systems on the plane”, Mat. Sb., 135(177):2 (1988), 186–209 | MR | Zbl

[8] Godunov S. K., Equations of mathematical physics, Nauka, Moscow, 1979 (in Russian) | MR | Zbl

[9] Brushlinskii K. V., “On the growth of solution to a mixed problem in the case of incompleteness of eigenfunctions”, Izv. Akad.Nauk SSSR. Ser. Mat., 23:6 (1959), 893–912

[10] Naimark M. A., Linear Differential Operators, Nauka, Moscow, 1969 (in Russian) | MR

[11] Vladimirov V. S., Equations of mathematical physics, Nauka, Moscow, 1981 (in Russian) | MR

[12] Lavrentiev M. M. (Jr.), Lyulko N. A., “Increasing of smoothness of the solutions to some hyperbolic problems”, Siberian Math. J., 38:1 (1997), 92–105 | DOI | MR

[13] Lyulko N. A., “A mixed problem for a hyperbolic system on the plane with delay in the boundary conditions”, Siberian. Math. J., 46:5 (2005), 879–901 | DOI | MR

[14] Lyulko N. A., “Increasing of smoothness of the solutions to a hyperbolic system on the plane with delay in the boundary conditions”, Siberian. Math. J., 49:6 (2008), 1334–1350 | MR

[15] Lyulko N. A., “Increasing of smoothness of the solutions to a boundary value problem for the wave equation on the plane”, Mat. Fiz. Anal. Geom., 11:2 (2004), 169–176 | MR