The increasing smoothness property of solutions to some hyperbolic problems in two independent variables
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 7 (2010), pp. 413-424

Voir la notice de l'article provenant de la source Math-Net.Ru

The initial-boundary problems for first-order hyperbolic systems and for the wave equation are considered in the half-strip $\Pi=\{(x,t):0$, $t>0\}$. Boundary conditions which guarantee the increasing of smoothness of the solutions to the considered problems as $t$ grows are formulated.
Keywords: first-order hyperbolic systems on the plane, wave equation, initial-boundary problems, increasing smoothness of the solutions.
@article{SEMR_2010_7_a39,
     author = {N. A. Lyul'ko},
     title = {The increasing smoothness property of solutions to some hyperbolic problems in two independent variables},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {413--424},
     publisher = {mathdoc},
     volume = {7},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2010_7_a39/}
}
TY  - JOUR
AU  - N. A. Lyul'ko
TI  - The increasing smoothness property of solutions to some hyperbolic problems in two independent variables
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2010
SP  - 413
EP  - 424
VL  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2010_7_a39/
LA  - en
ID  - SEMR_2010_7_a39
ER  - 
%0 Journal Article
%A N. A. Lyul'ko
%T The increasing smoothness property of solutions to some hyperbolic problems in two independent variables
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2010
%P 413-424
%V 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2010_7_a39/
%G en
%F SEMR_2010_7_a39
N. A. Lyul'ko. The increasing smoothness property of solutions to some hyperbolic problems in two independent variables. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 7 (2010), pp. 413-424. http://geodesic.mathdoc.fr/item/SEMR_2010_7_a39/