Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2010_7_a39, author = {N. A. Lyul'ko}, title = {The increasing smoothness property of solutions to some hyperbolic problems in two independent variables}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {413--424}, publisher = {mathdoc}, volume = {7}, year = {2010}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2010_7_a39/} }
TY - JOUR AU - N. A. Lyul'ko TI - The increasing smoothness property of solutions to some hyperbolic problems in two independent variables JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2010 SP - 413 EP - 424 VL - 7 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2010_7_a39/ LA - en ID - SEMR_2010_7_a39 ER -
%0 Journal Article %A N. A. Lyul'ko %T The increasing smoothness property of solutions to some hyperbolic problems in two independent variables %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2010 %P 413-424 %V 7 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2010_7_a39/ %G en %F SEMR_2010_7_a39
N. A. Lyul'ko. The increasing smoothness property of solutions to some hyperbolic problems in two independent variables. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 7 (2010), pp. 413-424. http://geodesic.mathdoc.fr/item/SEMR_2010_7_a39/
[1] Abolinya V. E., Myshkis A. D., “A mixed problem for an almost linear hyperbolic system on the plane”, Mat. Sb., 50(92):4 (1960), 423–442 | MR | Zbl
[2] Myshkis A. D., Filimonov A. M., “Continuous solutions of hyperbolic systems of quasilinear equations in two independent variables”, Nonlinear Analysis and Nonlinear Differential Equations, Fizmatlit, Moscow, 2003, 337–351 (in Russian) | MR | Zbl
[3] Akramov T. A., Differential Equations and Some of Their Applications in Modeling of Physicochemical Processes, Bashkirsk. Univ., Ufa, 2000 (Russian)
[4] Vorobyeva E. V., Romanovskiy R. K., “Method of characteristics for hyperbolic boundary problems on a plane”, Siberian Math. J., 41:4 (2000), 531–540 | MR
[5] Rauch J., Read M., “Nonlinear microlocal analysis of semilinear hyperbolic systems in one space dimension”, Duke Math. J., 49:2 (1982), 397–475 | DOI | MR | Zbl
[6] Kmit I., “Classical solvability of nonlinear initial-boundary problems for first-order hyperbolic systems”, International Journal of Dynamic Systems and Differential Systems and Differential Equations, 1:3 (2008), 91–195 | MR
[7] Eltysheva N. A., “On qualitative properties of solutions to some hyperbolic systems on the plane”, Mat. Sb., 135(177):2 (1988), 186–209 | MR | Zbl
[8] Godunov S. K., Equations of mathematical physics, Nauka, Moscow, 1979 (in Russian) | MR | Zbl
[9] Brushlinskii K. V., “On the growth of solution to a mixed problem in the case of incompleteness of eigenfunctions”, Izv. Akad.Nauk SSSR. Ser. Mat., 23:6 (1959), 893–912
[10] Naimark M. A., Linear Differential Operators, Nauka, Moscow, 1969 (in Russian) | MR
[11] Vladimirov V. S., Equations of mathematical physics, Nauka, Moscow, 1981 (in Russian) | MR
[12] Lavrentiev M. M. (Jr.), Lyulko N. A., “Increasing of smoothness of the solutions to some hyperbolic problems”, Siberian Math. J., 38:1 (1997), 92–105 | DOI | MR
[13] Lyulko N. A., “A mixed problem for a hyperbolic system on the plane with delay in the boundary conditions”, Siberian. Math. J., 46:5 (2005), 879–901 | DOI | MR
[14] Lyulko N. A., “Increasing of smoothness of the solutions to a hyperbolic system on the plane with delay in the boundary conditions”, Siberian. Math. J., 49:6 (2008), 1334–1350 | MR
[15] Lyulko N. A., “Increasing of smoothness of the solutions to a boundary value problem for the wave equation on the plane”, Mat. Fiz. Anal. Geom., 11:2 (2004), 169–176 | MR