The component number of links corresponding to lattices
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 7 (2010), pp. 458-460.

Voir la notice de l'article provenant de la source Math-Net.Ru

We give a new short proof of the main result of [1], which states that any rectangular $(m\times n)$-lattice determines a projection of a $d$-component link, where $d=\mathrm{gcd}(m+1,n+1)$.
Keywords: Lattice, medial graph, geodesic curves, flat torus.
Mots-clés : billiard trajectories
@article{SEMR_2010_7_a29,
     author = {L. R. Nabeeva},
     title = {The component number of links corresponding to lattices},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {458--460},
     publisher = {mathdoc},
     volume = {7},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2010_7_a29/}
}
TY  - JOUR
AU  - L. R. Nabeeva
TI  - The component number of links corresponding to lattices
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2010
SP  - 458
EP  - 460
VL  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2010_7_a29/
LA  - ru
ID  - SEMR_2010_7_a29
ER  - 
%0 Journal Article
%A L. R. Nabeeva
%T The component number of links corresponding to lattices
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2010
%P 458-460
%V 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2010_7_a29/
%G ru
%F SEMR_2010_7_a29
L. R. Nabeeva. The component number of links corresponding to lattices. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 7 (2010), pp. 458-460. http://geodesic.mathdoc.fr/item/SEMR_2010_7_a29/

[1] X. Jin, F. M. Dong, E. G. Tay, “On the component number of links corresponding to lattices”, Knot theory and its ramifications, 18 (2009), 1711–1727 | DOI

[2] K. Murasugi, Knot theory and its applications, Birkhauser, 1996 | MR | Zbl

[3] T. Pisanski, T. W. Tucker, A. Zitnik, “Straight-ahead walks in Eulerian graphs”, Discrete Math., 281 (2010), 237–246 | DOI | MR