The component number of links corresponding to lattices
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 7 (2010), pp. 458-460
Cet article a éte moissonné depuis la source Math-Net.Ru
We give a new short proof of the main result of [1], which states that any rectangular $(m\times n)$-lattice determines a projection of a $d$-component link, where $d=\mathrm{gcd}(m+1,n+1)$.
Keywords:
Lattice, medial graph, geodesic curves, flat torus.
Mots-clés : billiard trajectories
Mots-clés : billiard trajectories
@article{SEMR_2010_7_a29,
author = {L. R. Nabeeva},
title = {The component number of links corresponding to lattices},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {458--460},
year = {2010},
volume = {7},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SEMR_2010_7_a29/}
}
L. R. Nabeeva. The component number of links corresponding to lattices. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 7 (2010), pp. 458-460. http://geodesic.mathdoc.fr/item/SEMR_2010_7_a29/
[1] X. Jin, F. M. Dong, E. G. Tay, “On the component number of links corresponding to lattices”, Knot theory and its ramifications, 18 (2009), 1711–1727 | DOI
[2] K. Murasugi, Knot theory and its applications, Birkhauser, 1996 | MR | Zbl
[3] T. Pisanski, T. W. Tucker, A. Zitnik, “Straight-ahead walks in Eulerian graphs”, Discrete Math., 281 (2010), 237–246 | DOI | MR