Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2010_7_a29, author = {L. R. Nabeeva}, title = {The component number of links corresponding to lattices}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {458--460}, publisher = {mathdoc}, volume = {7}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2010_7_a29/} }
L. R. Nabeeva. The component number of links corresponding to lattices. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 7 (2010), pp. 458-460. http://geodesic.mathdoc.fr/item/SEMR_2010_7_a29/
[1] X. Jin, F. M. Dong, E. G. Tay, “On the component number of links corresponding to lattices”, Knot theory and its ramifications, 18 (2009), 1711–1727 | DOI
[2] K. Murasugi, Knot theory and its applications, Birkhauser, 1996 | MR | Zbl
[3] T. Pisanski, T. W. Tucker, A. Zitnik, “Straight-ahead walks in Eulerian graphs”, Discrete Math., 281 (2010), 237–246 | DOI | MR