Quasirecognizability of simple unitary groups over fields of even order
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 7 (2010), pp. 435-444.

Voir la notice de l'article provenant de la source Math-Net.Ru

We refer to the set of element orders of a finite group as the spectrum of this group and say that two groups are isospectral if their spectra coincide. We prove that finite simple unitary groups of dimension at least $5$ over fields of characteristic $2$ other than $U_5(2)$ are quasirecognizable by spectrum, that is every finite group isospectral to such unitary group $U$ has a unique nonabelian composition factor and this factor is isomorphic to $U$.
Keywords: unitary group, element orders, spectrum.
@article{SEMR_2010_7_a27,
     author = {M. A. Grechkoseeva},
     title = {Quasirecognizability  of simple unitary groups over fields of even order},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {435--444},
     publisher = {mathdoc},
     volume = {7},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2010_7_a27/}
}
TY  - JOUR
AU  - M. A. Grechkoseeva
TI  - Quasirecognizability  of simple unitary groups over fields of even order
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2010
SP  - 435
EP  - 444
VL  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2010_7_a27/
LA  - en
ID  - SEMR_2010_7_a27
ER  - 
%0 Journal Article
%A M. A. Grechkoseeva
%T Quasirecognizability  of simple unitary groups over fields of even order
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2010
%P 435-444
%V 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2010_7_a27/
%G en
%F SEMR_2010_7_a27
M. A. Grechkoseeva. Quasirecognizability  of simple unitary groups over fields of even order. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 7 (2010), pp. 435-444. http://geodesic.mathdoc.fr/item/SEMR_2010_7_a27/

[1] V. D. Mazurov, “Groups with prescribed spectrum”, Izv. Ural. Gos. Univ., 36 (2005), 119–138 (in Russian) | MR | Zbl

[2] M. A. Grechkoseeva, W. J. Shi, and A. V. Vasil'ev, “Recognition by spectrum of finite simple groups of Lie type”, Front. Math. China, 3:2 (2008), 275–285 | DOI | MR | Zbl

[3] V. D. Mazurov, M. C. Xu, and H. P. Cao, “Recognition of finite simple groups $L_3(2^m)$ and $U_3(2^m)$ by their element orders”, Algebra and Logic, 39:5 (2000), 324–334 | DOI | MR | Zbl

[4] V. D. Mazurov and G. Y. Chen, “Recognizability of finite simple groups $L_4(2^m)$ and $U_4(2^m)$ by spectrum”, Algebra and Logic, 47:1 (2008), 49–55 | DOI | MR | Zbl

[5] V. D. Mazurov, “Recognition of finite groups by a set of orders of their elements”, Algebra and Logic, 37:6 (1998), 371–379 | DOI | MR | Zbl

[6] W. J. Shi and H. L. Li, “A characteristic property of $M_{12}$ and $PSU(6,2)$”, Acta Math. Sin., 32 (1989), 758–764 (in Chinese) | MR | Zbl

[7] A. V. Vasil'ev, M. A. Grechkoseeva, and A. M. Staroletov, “On finite groups isospectral to simple linear and unitary groups”, Siberian Math. J. (to appear)

[8] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, and R. A. Wilson, Atlas of finite groups, Clarendon Press, Oxford, 1985 | MR | Zbl

[9] A. V. Vasil'ev, “On connection between the structure of a finite group and properties of its prime graph”, Siberian Math. J., 46:3 (2005), 511–522 | MR

[10] A. V. Vasilyev and I. B. Gorshkov, “On recognition of finite simple groups with connected prime graph”, Siberian Math. J., 50:2 (2009), 233–238 | DOI | MR

[11] A. V. Vasil'ev and M. A. Grechkoseeva, “Recognition by spectrum for finite linear groups of small dimensions over fields of characteristic $2$”, Algebra and Logic, 47:5 (2008), 314–320 | DOI | MR

[12] M. A. Grechkoseeva, “Recognition of finite linear groups over fields of characteristic $2$ by spectrum”, Algebra and Logic, 47:4 (2008), 229–241 | DOI | MR | Zbl

[13] A. V. Vasilyev, “Recognizing groups $G_2(3^n)$ by their element orders”, Algebra and Logic, 41:2 (2002), 74–80 | DOI | MR | Zbl

[14] W. M. Kantor and A. Seress, “Prime power graphs for groups of Lie type”, J. Algebra, 427 (2002), 370–434 | DOI | MR

[15] K. Zsigmondy, “Zur Theorie der Potenzreste”, Monatsh. Math. Phys., 3 (1892), 265–284 | DOI | MR

[16] M. Roitman, “On Zsigmondy primes”, Proc. Amer. Math. Soc., 125 (1997), 1913–1919 | DOI | MR | Zbl

[17] A. A. Buturlakin, “Spectra of finite linear and unitary groups”, Algebra and Logic, 47:2 (2008), 157–173 | DOI | MR | Zbl

[18] A. V. Vasil'ev and E. P. Vdovin, Cocliques of maximal size in the prime graph of a finite simple group, Preprint No. 225, Sobolev Insitute of Mathematics, Novosibirsk, 2009 See also, arXiv: 0905.1164

[19] A. V. Vasiliev and E. P. Vdovin, “An adjacency criterion for the prime graph of a finite simple group”, Algebra and Logic, 44:6 (2005), 381–406 | DOI | MR | Zbl

[20] D. I. Deriziotis and A. P. Fakiolas, “The maximal tori of the finite Chevalley groups of type $E_6$, $E_7$ and $E_8$”, Comm. Algebra, 19 (1991), 889–903 | DOI | MR | Zbl

[21] H. N. Ward, “On Ree's series of simple groups”, Trans. Amer. Math. Soc., 121 (1966), 62–89 | MR | Zbl