Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2010_7_a27, author = {M. A. Grechkoseeva}, title = {Quasirecognizability of simple unitary groups over fields of even order}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {435--444}, publisher = {mathdoc}, volume = {7}, year = {2010}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2010_7_a27/} }
M. A. Grechkoseeva. Quasirecognizability of simple unitary groups over fields of even order. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 7 (2010), pp. 435-444. http://geodesic.mathdoc.fr/item/SEMR_2010_7_a27/
[1] V. D. Mazurov, “Groups with prescribed spectrum”, Izv. Ural. Gos. Univ., 36 (2005), 119–138 (in Russian) | MR | Zbl
[2] M. A. Grechkoseeva, W. J. Shi, and A. V. Vasil'ev, “Recognition by spectrum of finite simple groups of Lie type”, Front. Math. China, 3:2 (2008), 275–285 | DOI | MR | Zbl
[3] V. D. Mazurov, M. C. Xu, and H. P. Cao, “Recognition of finite simple groups $L_3(2^m)$ and $U_3(2^m)$ by their element orders”, Algebra and Logic, 39:5 (2000), 324–334 | DOI | MR | Zbl
[4] V. D. Mazurov and G. Y. Chen, “Recognizability of finite simple groups $L_4(2^m)$ and $U_4(2^m)$ by spectrum”, Algebra and Logic, 47:1 (2008), 49–55 | DOI | MR | Zbl
[5] V. D. Mazurov, “Recognition of finite groups by a set of orders of their elements”, Algebra and Logic, 37:6 (1998), 371–379 | DOI | MR | Zbl
[6] W. J. Shi and H. L. Li, “A characteristic property of $M_{12}$ and $PSU(6,2)$”, Acta Math. Sin., 32 (1989), 758–764 (in Chinese) | MR | Zbl
[7] A. V. Vasil'ev, M. A. Grechkoseeva, and A. M. Staroletov, “On finite groups isospectral to simple linear and unitary groups”, Siberian Math. J. (to appear)
[8] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, and R. A. Wilson, Atlas of finite groups, Clarendon Press, Oxford, 1985 | MR | Zbl
[9] A. V. Vasil'ev, “On connection between the structure of a finite group and properties of its prime graph”, Siberian Math. J., 46:3 (2005), 511–522 | MR
[10] A. V. Vasilyev and I. B. Gorshkov, “On recognition of finite simple groups with connected prime graph”, Siberian Math. J., 50:2 (2009), 233–238 | DOI | MR
[11] A. V. Vasil'ev and M. A. Grechkoseeva, “Recognition by spectrum for finite linear groups of small dimensions over fields of characteristic $2$”, Algebra and Logic, 47:5 (2008), 314–320 | DOI | MR
[12] M. A. Grechkoseeva, “Recognition of finite linear groups over fields of characteristic $2$ by spectrum”, Algebra and Logic, 47:4 (2008), 229–241 | DOI | MR | Zbl
[13] A. V. Vasilyev, “Recognizing groups $G_2(3^n)$ by their element orders”, Algebra and Logic, 41:2 (2002), 74–80 | DOI | MR | Zbl
[14] W. M. Kantor and A. Seress, “Prime power graphs for groups of Lie type”, J. Algebra, 427 (2002), 370–434 | DOI | MR
[15] K. Zsigmondy, “Zur Theorie der Potenzreste”, Monatsh. Math. Phys., 3 (1892), 265–284 | DOI | MR
[16] M. Roitman, “On Zsigmondy primes”, Proc. Amer. Math. Soc., 125 (1997), 1913–1919 | DOI | MR | Zbl
[17] A. A. Buturlakin, “Spectra of finite linear and unitary groups”, Algebra and Logic, 47:2 (2008), 157–173 | DOI | MR | Zbl
[18] A. V. Vasil'ev and E. P. Vdovin, Cocliques of maximal size in the prime graph of a finite simple group, Preprint No. 225, Sobolev Insitute of Mathematics, Novosibirsk, 2009 See also, arXiv: 0905.1164
[19] A. V. Vasiliev and E. P. Vdovin, “An adjacency criterion for the prime graph of a finite simple group”, Algebra and Logic, 44:6 (2005), 381–406 | DOI | MR | Zbl
[20] D. I. Deriziotis and A. P. Fakiolas, “The maximal tori of the finite Chevalley groups of type $E_6$, $E_7$ and $E_8$”, Comm. Algebra, 19 (1991), 889–903 | DOI | MR | Zbl
[21] H. N. Ward, “On Ree's series of simple groups”, Trans. Amer. Math. Soc., 121 (1966), 62–89 | MR | Zbl