Quasirecognizability of simple unitary groups over fields of even order
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 7 (2010), pp. 435-444

Voir la notice de l'article provenant de la source Math-Net.Ru

We refer to the set of element orders of a finite group as the spectrum of this group and say that two groups are isospectral if their spectra coincide. We prove that finite simple unitary groups of dimension at least $5$ over fields of characteristic $2$ other than $U_5(2)$ are quasirecognizable by spectrum, that is every finite group isospectral to such unitary group $U$ has a unique nonabelian composition factor and this factor is isomorphic to $U$.
Keywords: unitary group, element orders, spectrum.
@article{SEMR_2010_7_a27,
     author = {M. A. Grechkoseeva},
     title = {Quasirecognizability  of simple unitary groups over fields of even order},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {435--444},
     publisher = {mathdoc},
     volume = {7},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2010_7_a27/}
}
TY  - JOUR
AU  - M. A. Grechkoseeva
TI  - Quasirecognizability  of simple unitary groups over fields of even order
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2010
SP  - 435
EP  - 444
VL  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2010_7_a27/
LA  - en
ID  - SEMR_2010_7_a27
ER  - 
%0 Journal Article
%A M. A. Grechkoseeva
%T Quasirecognizability  of simple unitary groups over fields of even order
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2010
%P 435-444
%V 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2010_7_a27/
%G en
%F SEMR_2010_7_a27
M. A. Grechkoseeva. Quasirecognizability  of simple unitary groups over fields of even order. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 7 (2010), pp. 435-444. http://geodesic.mathdoc.fr/item/SEMR_2010_7_a27/