On partitions into affine nonequivalent perfect $q$-ary codes
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 7 (2010), pp. 425-434.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that there exists a partition of the set $F^N_q$ of all $q$-ary vectors of length $N$ into pairwise affine nonequivalent perfect $q$-ary codes of length $N$ with the Hamming distance $3$ for any $N=(q^m-1)/(q-1)$, where $q=p^r,$ $p$ is prime.
Keywords: perfect $q$-ary code, partition into perfect codes, switching
Mots-clés : affine nonequivalence of codes.
@article{SEMR_2010_7_a26,
     author = {A. V. Los' and F. I. Solov'eva},
     title = {On partitions into affine nonequivalent perfect $q$-ary codes},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {425--434},
     publisher = {mathdoc},
     volume = {7},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2010_7_a26/}
}
TY  - JOUR
AU  - A. V. Los'
AU  - F. I. Solov'eva
TI  - On partitions into affine nonequivalent perfect $q$-ary codes
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2010
SP  - 425
EP  - 434
VL  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2010_7_a26/
LA  - ru
ID  - SEMR_2010_7_a26
ER  - 
%0 Journal Article
%A A. V. Los'
%A F. I. Solov'eva
%T On partitions into affine nonequivalent perfect $q$-ary codes
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2010
%P 425-434
%V 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2010_7_a26/
%G ru
%F SEMR_2010_7_a26
A. V. Los'; F. I. Solov'eva. On partitions into affine nonequivalent perfect $q$-ary codes. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 7 (2010), pp. 425-434. http://geodesic.mathdoc.fr/item/SEMR_2010_7_a26/

[1] Avgustinovich S. V., Soloveva F. I., Kheden U., “O razbieniyakh $n$-kuba na neekvivalentnye sovershennye kody”, Probl. peredachi inform., 43:4 (2007), 45–50 | MR | Zbl

[2] Cohen G., Honkala I., Lobstein A., Litsyn S., Covering codes, Elsevier, 1998 | MR

[3] Schönheim J., “On linear and nonlinear single-error-correcting $q$-nary $1$ perfect codes”, Inform. Control, 12 (1986), 23–26 | DOI | MR

[4] Phelps K. T., Villanueva M., “Ranks of $q$-ary 1 perfect codes”, Des. Codes Cryptogr., 27 (2002), 139–144 | DOI | MR | Zbl

[5] Mak-Vilyams F. Dzh., Sloen N. Dzh. A., Teoriya kodov, ispravlyayuschikh oshibki, M., 1979

[6] Avgustinovich S. V., Soloveva F. I., “Postroenie sovershennykh dvoichnykh kodov posledovatelnymi sdvigami $\widetilde{\alpha}$-komponent”, Probl. peredachi inform., 33:3 (1997), 15–21 | MR | Zbl

[7] Los A. V., “Postroenie sovershennykh $q$-znachnykh kodov posledovatelnymi sdvigami $\widetilde{\alpha}$-komponent”, Probl. peredachi inform., 40:1 (2004), 33–39 | MR | Zbl

[8] Los A. V., “Postroenie sovershennykh $q$-znachnykh kodov svitchingami prostykh komponent”, Probl. peredachi inform., 42:1 (2006), 34–42 | MR | Zbl