Using the parameter ``reflection'' method for numerical study of the biological systems models
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 7 (2010), pp. 394-412.

Voir la notice de l'article provenant de la source Math-Net.Ru

Numerical investigation of a series of nonlinear problems maybe realized with a help of so-called “parameter reflection method”. This method is an effective way for study the solution dependence on the model parameters due to the taking into account of the character features of the considered mathematical model. There are some examples of the parameter reflection method application by analysis of the specific mathematical models of biological systems, which describe development of organisms, their tissues and organs, and also the models of molecular-genetic systems as the base of describing of biological systems functioning.
Keywords: mathematical modeling, numerical analysis, parameter reflection method, nonlinear equations, stationary solutions, biological systems, synthesis of substance, hypothetical gene networks.
@article{SEMR_2010_7_a25,
     author = {V. A. Likhoshvai and S. I. Fadeev},
     title = {Using the parameter ``reflection'' method for numerical study of the biological systems models},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {394--412},
     publisher = {mathdoc},
     volume = {7},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2010_7_a25/}
}
TY  - JOUR
AU  - V. A. Likhoshvai
AU  - S. I. Fadeev
TI  - Using the parameter ``reflection'' method for numerical study of the biological systems models
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2010
SP  - 394
EP  - 412
VL  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2010_7_a25/
LA  - ru
ID  - SEMR_2010_7_a25
ER  - 
%0 Journal Article
%A V. A. Likhoshvai
%A S. I. Fadeev
%T Using the parameter ``reflection'' method for numerical study of the biological systems models
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2010
%P 394-412
%V 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2010_7_a25/
%G ru
%F SEMR_2010_7_a25
V. A. Likhoshvai; S. I. Fadeev. Using the parameter ``reflection'' method for numerical study of the biological systems models. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 7 (2010), pp. 394-412. http://geodesic.mathdoc.fr/item/SEMR_2010_7_a25/

[1] V. A. Likhoshvai, Yu. G. Matushkin, S. I. Fadeev, “Zadachi teorii funktsionirovaniya gennykh setei”, Sibirskii zhurnal industrialnoi matematiki, 6 (2003), 64–80 | MR

[2] V. A. Likhoshvai, S. I. Fadeev, G. V. Demidenko, Yu. G. Matushkin, “Modelirovanie mnogostadiinogo sinteza veschestva bez vetvleniya uravneniem s zapazdyvayuschim argumentom”, Sibirskii zhurnal industrialnoi matematiki, 7 (2004), 73–94 | MR | Zbl

[3] A. V. Ratushnyi, V. A. Likhoshvai, E. A. Ananko, N. V. Vladimirov, K. V. Gunbin, S. A. Lashin, E. A. Nedosekina, S. V. Nikolaev, L. V. Omelyanchuk, Yu. G. Matushkin, N. A. Kolchanov, “Novosibirskaya shkola sistemnoi kompyuternoi biologii: istoricheskii ekskurs i perspektivy razvitiya”, Informatsionnyi vestnik VOGiS, 9 (2005), 232–261

[4] V. A. Likhoshvai, S. I. Fadeev, Yu. G. Matushkin, G. V. Demidenko, N. A. Kolchanov, “Matematicheskoe modelirovanie regulyatornykh konturov gennykh setei”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 44:10 (2004), 1921–1940 | MR

[5] S. I. Fadeev, V. V. Kogai, L. V. Omelyanchuk, V. A. Likhoshvai, “O matematicheskom modelirovanii patterna raspredeleniya auksina v korne rastenii”, Sibirskie Elektronnye Matematicheskie Izvestiya, 5 (2008), 25–41 | MR

[6] S. I. Fadeev, V. A. Likhoshvai, D. N. Shtokalo, “Issledovanie modeli sinteza lineinykh biomolekul s uchetom obratimosti protsessov”, Sibirskii zhurnal industrialnoi matematiki, 8 (2005), 149–162 | MR | Zbl

[7] S. I. Fadeev, V. A. Likhoshvai, D. N. Shtokalo, “Study of a Model of Linear Biomolecular Synthesis with Reversible Processes”, Journal of Applied and Industrial Mathematics, 1 (2007), 178–189 | DOI

[8] D. N. Shtokalo, “O predelnom perekhode k uravneniyu s zapazdyvayuschim argumentom v modeli sinteza veschestva s uchetom obratimosti i stokov”, Sibirskii zhurnal industrialnoi matematiki, 12:2 (2009), 143–156 | MR

[9] S. I. Fadeev, N. A. Omelyanchuk, V. A. Likhoshvai, “Issledovanie matematicheskoi modeli avtoregulyatsii sinteza belka Hes7”, Sibirskii zhurnal industrialnoi matematiki, 11:1(33) (2008), 131–140 | MR

[10] S. I. Fadeev, N. A. Omel'yanchuk and V. A. Likhoshvai, “Study of a Mathematical Model for the Autoregulation of Hes7 Protein Synthesis”, Journal of Applied and Industrial Mathematics, 3 (2009), 1–10 | DOI

[11] H. de Jong, “Modeling and simulation of genetic regulatory systems: a literature review”, J. Comput. Biol., 9 (2002), 67–103 | DOI

[12] D. Endy, R. Brent, “Modelling cellular behaviour”, Nature, 409 (2001), 391–395 | DOI

[13] J. Hasty, D. McMillen, F. Isaacs, J. J. Collins, “Computational studies of gene regulatory networks: in numero molecular biology”, Nat. Rev. Genet., 2:4 (2001), 268–279 | DOI | MR

[14] V. A. Likhoshvai, Yu. G. Matushkin, Yu. N. Vatolin, S. I. Bazhan, “A generalized chemical kinetic metod for simulating complex biological systems. A computer model of $\lambda$ phage ontogenesis”, Computational Technologies, 5 (2000), 87–99

[15] V. Likhoshvai and A. Ratushny, “Generalized Hill function method for modeling molecular processes”, Journal of Bioinformatics and Comp. Biology, 5:2 (2007), 521–531 | DOI | MR

[16] H. H. McAdams, A. Arkin, “Simulation of prokaryotic genetic circuits”, Annu. Rev. Biophys. Biomol. Struct., 27 (1998), 199–224 | DOI

[17] E. A. Oshchepkova-Nedosekina, V. A. Likhoshvai, “A mathematical model for the adenylosuccinate synthetase reaction involved in purine biosynthesis”, Theoretical Biology and Medical Modelling, 4:11 (2007)

[18] P. Smolen, D. A. Baxter, J. H. Byrne, “Modeling transcriptional control in gene networks-methods, recent results, and future directions”, Bull. Math. Biol., 62:2 (2000), 247–292 | DOI

[19] T. E. Turner, S. Schnell, K. Burrage, “Stochastic approaches for modelling in vivo reactions”, Comput. Biol. Chem., 28:3 (2004), 165–178 | DOI | Zbl

[20] M. Kholodniok, A. K. Klich, M. Kubichek, M. Marek, Metody analiza nelineinykh dinamicheskikh modelei, Mir, M., 1991

[21] V. P. Golubyatnikov, V. A. Likhoshvai, “Odnomernaya model razvitiya populyatsii zemnovodnykh”, Sibirskii zhurnal industrialnoi matematiki, 5 (2002), 53–60 | MR | Zbl

[22] V. A. Likhoshvai, V. P. Golubyatnikov, G. V. Demidenko, A. A. Evdokimov, I. I. Matveeva, S. I. Fadeev, “Teoriya gennykh setei”, Sistemnaya kompyuternaya biologiya, eds. N. A. Kolchanov, S. S. Goncharov, V. A. Likhoshvai i V. A. Ivanisenko, Izd. SO RAN, Novosibirsk, 2008, 397–480

[23] S. I. Fadeev, V. A. Likhoshvai, “O gipoteticheskikh gennykh setyakh”, Sibirskii zhurnal industrialnoi matematiki, 6 (2003), 134–153 | MR | Zbl

[24] S. I. Fadeev, S. V. Nikolaev, V. V. Kogai, E. Miolsness, N. A. Kolchanov, “Issledovanie odnomernoi modeli regulyatsii razmerov vozobnovitelnoi zony v biologicheskoi tkani”, Vychislitelnye tekhnologii, 11 (2006), 65–79

[25] S. K. Godunov, V. S. Ryabenkii, Raznostnye skhemy, Nauka, M., 1973 | Zbl