Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2010_7_a24, author = {A. Yu. Vesnin and A. V. Litvintseva}, title = {On linking of hamiltonian pairs of cycles in spatial graphs}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {383--393}, publisher = {mathdoc}, volume = {7}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2010_7_a24/} }
TY - JOUR AU - A. Yu. Vesnin AU - A. V. Litvintseva TI - On linking of hamiltonian pairs of cycles in spatial graphs JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2010 SP - 383 EP - 393 VL - 7 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2010_7_a24/ LA - ru ID - SEMR_2010_7_a24 ER -
A. Yu. Vesnin; A. V. Litvintseva. On linking of hamiltonian pairs of cycles in spatial graphs. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 7 (2010), pp. 383-393. http://geodesic.mathdoc.fr/item/SEMR_2010_7_a24/
[1] P. Blain, G. Bowlin, J. Foisy, J. Hendricks, J. LaCombe, “Knotted Hamiltonian cycles in spatial embedding of complete graphs”, New York J. of Math., 13 (2007), 11–16 | MR | Zbl
[2] J. H. Conway, C. McA. Gordon, “Knots and links in spatial graphs”, J. Graph Theory, 7 (2003), 445–453 | DOI | MR
[3] J. Foisy, “Corrigendum to “Knotted Hamiltonian cycles in spatial embedding of complete graphs””, New York J. of Math, 14 (2008), 285–287 | MR | Zbl
[4] H. Sachs, “On spatial representations of finite graphs”, Finite and infinite sets, Colloquia Mathematica Societatis Janos Bolyai, 37, eds. A. Hajnal, L. Lovasz, V. T. Sos, North-Holland, Amsterdam, 1984, 649–662 | MR
[5] M. Shimabara, “Knots in certain spatial graphs”, Tokyo J. Math., 11:2 (1988), 405–413 | DOI | MR | Zbl
[6] R. Motwani, A. Raghunathan, H. Saran, “Constructive results from graph minors: linkless embeddings”, 29-th Asian Symposium on Foundations of Computer Sciences, IEEE, 1988, 398–408