On linking of hamiltonian pairs of cycles in spatial graphs
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 7 (2010), pp. 383-393

Voir la notice de l'article provenant de la source Math-Net.Ru

A pair of disjoint cycles in a graph is said to be hamiltonian if the union of cycles covers all vertices of the graph. It is shown that for each $n\ge7$ for any spatial embedding of the complete graph $K_n$ there is a hamiltonian pair that forms a nontrivial two-component link.
Mots-clés : spatial graph
Keywords: knot, link, hamiltonian cycle.
@article{SEMR_2010_7_a24,
     author = {A. Yu. Vesnin and A. V. Litvintseva},
     title = {On linking of hamiltonian pairs of cycles in spatial graphs},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {383--393},
     publisher = {mathdoc},
     volume = {7},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2010_7_a24/}
}
TY  - JOUR
AU  - A. Yu. Vesnin
AU  - A. V. Litvintseva
TI  - On linking of hamiltonian pairs of cycles in spatial graphs
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2010
SP  - 383
EP  - 393
VL  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2010_7_a24/
LA  - ru
ID  - SEMR_2010_7_a24
ER  - 
%0 Journal Article
%A A. Yu. Vesnin
%A A. V. Litvintseva
%T On linking of hamiltonian pairs of cycles in spatial graphs
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2010
%P 383-393
%V 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2010_7_a24/
%G ru
%F SEMR_2010_7_a24
A. Yu. Vesnin; A. V. Litvintseva. On linking of hamiltonian pairs of cycles in spatial graphs. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 7 (2010), pp. 383-393. http://geodesic.mathdoc.fr/item/SEMR_2010_7_a24/