On linking of hamiltonian pairs of cycles in spatial graphs
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 7 (2010), pp. 383-393.

Voir la notice de l'article provenant de la source Math-Net.Ru

A pair of disjoint cycles in a graph is said to be hamiltonian if the union of cycles covers all vertices of the graph. It is shown that for each $n\ge7$ for any spatial embedding of the complete graph $K_n$ there is a hamiltonian pair that forms a nontrivial two-component link.
Mots-clés : spatial graph
Keywords: knot, link, hamiltonian cycle.
@article{SEMR_2010_7_a24,
     author = {A. Yu. Vesnin and A. V. Litvintseva},
     title = {On linking of hamiltonian pairs of cycles in spatial graphs},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {383--393},
     publisher = {mathdoc},
     volume = {7},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2010_7_a24/}
}
TY  - JOUR
AU  - A. Yu. Vesnin
AU  - A. V. Litvintseva
TI  - On linking of hamiltonian pairs of cycles in spatial graphs
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2010
SP  - 383
EP  - 393
VL  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2010_7_a24/
LA  - ru
ID  - SEMR_2010_7_a24
ER  - 
%0 Journal Article
%A A. Yu. Vesnin
%A A. V. Litvintseva
%T On linking of hamiltonian pairs of cycles in spatial graphs
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2010
%P 383-393
%V 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2010_7_a24/
%G ru
%F SEMR_2010_7_a24
A. Yu. Vesnin; A. V. Litvintseva. On linking of hamiltonian pairs of cycles in spatial graphs. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 7 (2010), pp. 383-393. http://geodesic.mathdoc.fr/item/SEMR_2010_7_a24/

[1] P. Blain, G. Bowlin, J. Foisy, J. Hendricks, J. LaCombe, “Knotted Hamiltonian cycles in spatial embedding of complete graphs”, New York J. of Math., 13 (2007), 11–16 | MR | Zbl

[2] J. H. Conway, C. McA. Gordon, “Knots and links in spatial graphs”, J. Graph Theory, 7 (2003), 445–453 | DOI | MR

[3] J. Foisy, “Corrigendum to “Knotted Hamiltonian cycles in spatial embedding of complete graphs””, New York J. of Math, 14 (2008), 285–287 | MR | Zbl

[4] H. Sachs, “On spatial representations of finite graphs”, Finite and infinite sets, Colloquia Mathematica Societatis Janos Bolyai, 37, eds. A. Hajnal, L. Lovasz, V. T. Sos, North-Holland, Amsterdam, 1984, 649–662 | MR

[5] M. Shimabara, “Knots in certain spatial graphs”, Tokyo J. Math., 11:2 (1988), 405–413 | DOI | MR | Zbl

[6] R. Motwani, A. Raghunathan, H. Saran, “Constructive results from graph minors: linkless embeddings”, 29-th Asian Symposium on Foundations of Computer Sciences, IEEE, 1988, 398–408