Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2010_7_a23, author = {V. N. Potapov}, title = {On perfect colorings of {Boolean} $n$-cube and correlation immune functions with small density}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {372--382}, publisher = {mathdoc}, volume = {7}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2010_7_a23/} }
TY - JOUR AU - V. N. Potapov TI - On perfect colorings of Boolean $n$-cube and correlation immune functions with small density JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2010 SP - 372 EP - 382 VL - 7 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2010_7_a23/ LA - ru ID - SEMR_2010_7_a23 ER -
V. N. Potapov. On perfect colorings of Boolean $n$-cube and correlation immune functions with small density. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 7 (2010), pp. 372-382. http://geodesic.mathdoc.fr/item/SEMR_2010_7_a23/
[1] D. G. Fon-Der-Flaass, “Sovershennye 2-raskraski giperkuba”, Sibirskii matematicheskii zhurnal, 48:4 (2007), 923–930 | MR | Zbl
[2] D. G. Fon-Der-Flaass, “Sovershennye 2-raskraski 12-mernogo kuba, dostigayuschie granitsy korrelyatsionnoi immunnosti”, Sibirskie Elektronnye Matematicheskie Izvestiya, 4 (2007), 292–295 | MR | Zbl
[3] D. G. Fon-Der-Flaass, “A bound of correlation immunity”, Sibirskie Elektronnye Matematicheskie Izvestiya (Siberian Electronic Mathematical Reports), 4 (2007), 133–135 | MR | Zbl
[4] K. V. Vorobev, D. G. Fon-Der-Flaass, “O sovershennykh 2-raskraskakh giperkuba”, Sibirskie Elektronnye Matematicheskie Izvestiya, 7 (2010), 65–75 | MR
[5] Yu. V. Tarannikov, “O korrelyatsionno-immunnykh i ustoichivykh bulevykh funktsiyakh”, Matematicheskie voprosy kibernetiki, 11, Fizmatlit, M., 2002, 91–148 | MR
[6] J. Friedman, “On the bit extraction problem”, Proc. 33rd IEEE Symposium on Foundations of Computer Science (1992), 314–319 | Zbl
[7] J. Bierbrauer, “Bounds on orthogonal arrays and resilient functions”, Journal of Combinatorial Designs, 3 (1995), 179–183 | DOI | MR | Zbl
[8] P. R. J. Ostergard, O. Pottonen, and K. T. Phelps, “The perfect binary one-error-correcting codes of length 15: Part II-Properties”, IEEE Transactions on Information Theory, 56 (2010), 2571–2582 | DOI
[9] K. T. Phelps, “A general product construction for error correcting codes”, SIAM J. Algebraic Discrete Methods, 5:2 (1984), 224–228 | DOI | MR | Zbl
[10] D. S. Krotov, “Nizhnie otsenki chisla $m$-kvazigrupp poryadka $4$ i chisla sovershennykh dvoichnykh kodov”, Diskret. analiz i issled. operatsii. Ser. 1, 7:2 (2000), 47–53 | MR | Zbl
[11] D. S. Krotov, S. V. Avgustinovich, “On the number of 1-perfect binary codes: a lower bound”, IEEE Trans. Inform. Theory, 54:4 (2008), 1760–1765 | DOI | MR
[12] O. A. Logachev, A. A. Salnikov, V. V. Yaschenko, Bulevy funktsii v teorii kodirovaniya i kriptologii, Izd-vo MTsNMO, M., 2004
[13] F. Dzh. Mak-Vilyams, N. Dzh. A. Sloen, Teoriya kodov, ispravlyayuschikh oshibki, Svyaz, M., 1979 | Zbl
[14] V. N. Potapov, D. S. Krotov, “Asimptotika chisla $n$-kvazigrupp poryadka 4”, Sibirskii matematicheskii zhurnal, 47:4 (2006), 873–887 | MR | Zbl