Indecomposable invariants of quivers for dimension $(2,\dots,2)$ and maximal paths,~II
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 7 (2010), pp. 350-371

Voir la notice de l'article provenant de la source Math-Net.Ru

An upper bound on degrees of elements of a minimal generating system for invariants of quivers of dimension $(2,\dots,2)$ is established over a field of arbitrary characteristic and its precision is estimated. The proof is based on the reduction to the problem of description of maximal paths satisfying certain condition.
Keywords: representations of quivers, oriented graphs, maximal paths.
Mots-clés : invariants
@article{SEMR_2010_7_a22,
     author = {A. A. Lopatin},
     title = {Indecomposable invariants of quivers for dimension $(2,\dots,2)$ and maximal {paths,~II}},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {350--371},
     publisher = {mathdoc},
     volume = {7},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2010_7_a22/}
}
TY  - JOUR
AU  - A. A. Lopatin
TI  - Indecomposable invariants of quivers for dimension $(2,\dots,2)$ and maximal paths,~II
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2010
SP  - 350
EP  - 371
VL  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2010_7_a22/
LA  - en
ID  - SEMR_2010_7_a22
ER  - 
%0 Journal Article
%A A. A. Lopatin
%T Indecomposable invariants of quivers for dimension $(2,\dots,2)$ and maximal paths,~II
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2010
%P 350-371
%V 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2010_7_a22/
%G en
%F SEMR_2010_7_a22
A. A. Lopatin. Indecomposable invariants of quivers for dimension $(2,\dots,2)$ and maximal paths,~II. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 7 (2010), pp. 350-371. http://geodesic.mathdoc.fr/item/SEMR_2010_7_a22/