Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2010_7_a21, author = {V. A. Topchii}, title = {Derivative of renewal density with infinite moment with $\alpha\in(0,1/2]$}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {340--349}, publisher = {mathdoc}, volume = {7}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2010_7_a21/} }
V. A. Topchii. Derivative of renewal density with infinite moment with $\alpha\in(0,1/2]$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 7 (2010), pp. 340-349. http://geodesic.mathdoc.fr/item/SEMR_2010_7_a21/
[1] V. Topchii, “Renewal measure density for distributions with regularly varying tails of order $\alpha\in(0,1/2]$”, Workshop on Branching Processes and Their Applications, Lecture Notes in Statistics, 197, 2010, 109–118
[2] A. Garsia, J. Lamperti, “A discrite renewal theorem with infinite mean”, Comment. Math. Helv., 37 (1962/63), 221–234 | DOI | MR
[3] J. L. Teugels, “Renewal theorems when the first or second moment is infinite”, Ann. Math. Stat., 39 (1968), 1210–1219 | DOI | MR | Zbl
[4] K. B. Erickson, “Strong renewal theorems with infinite mean”, Transactions of the American Mathematical Society, 151 (1970), 263–291 | DOI | MR | Zbl
[5] V. Feller, Vvedenie v teoriyu veroyatnostei i ee prilozheniya, v. 2, Mir, Moskva, 1984
[6] K. B. Erickson, “A renewal theorem for distribution on $\mathbb R^1$ without expectation”, Buletin Amer. Math. Society, 77 (1971), 406–410 | DOI | MR | Zbl
[7] M. S. Sgibnev, “Asimptotika plotnosti funktsii vosstanovleniya”, Sibirskii matematicheskii zhurnal, 20 (1979), 141–151 | MR | Zbl
[8] S. Albeverio, L. V. Bogachev, “Branching random walk in a catalytic medium. I. Basic equations”, Positivity, 4 (2000), 41–100 | DOI | MR | Zbl
[9] V. A. Topchii, V. A. Vatutin, “Two-dimensional limit theorem for a critical catalytic branching random walk”, Mathematics and Computer Science III, Trends Math., eds. M. Drmota, P. Flajolet, D. Gardy, B. Gittenberger, Birkhäuser, Basel, 2004, 387–395 | MR | Zbl
[10] V. A. Topchii, V. A. Vatutin, E. B. Yarovaya, “Catalytic branching random walk and queueing systems with random number of independent servers”, Theory of Probability and Mathematical Statistics, 69 (2003), 1–15 | MR
[11] I. A. Ibragimov, Yu. V. Linnik, Nezavisimye i statsionarno svyazannye sluchainye velichiny, Nauka, Moskva, 1965