Derivative of renewal density with infinite moment with $\alpha\in(0,1/2]$
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 7 (2010), pp. 340-349

Voir la notice de l'article provenant de la source Math-Net.Ru

Increments of the renewal function related to the distributions with infinite means and regularly varying tails of orders $\alpha\in(0,1]$ were described by Erickson [4,6]. However, explicit asymptotics for the increments are known for $\alpha\in(1/2,1]$ only. For smaller $\alpha$ one can get, generally speaking, only the lower limit of the increments. There are many examples showing that this statement cannot be improved in general. Topchii [1] refine Erikson's results by describing sufficient conditions for regularity of the renewal measure density of the distributions with regularly varying tails with $\alpha\in(0,1/2]$. Here we propose the conditions for regularity of the renewal measure density derivative.
Keywords: renewal measure density, regularly varying tails
Mots-clés : stable distributions.
@article{SEMR_2010_7_a21,
     author = {V. A. Topchii},
     title = {Derivative of renewal density with infinite moment with $\alpha\in(0,1/2]$},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {340--349},
     publisher = {mathdoc},
     volume = {7},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2010_7_a21/}
}
TY  - JOUR
AU  - V. A. Topchii
TI  - Derivative of renewal density with infinite moment with $\alpha\in(0,1/2]$
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2010
SP  - 340
EP  - 349
VL  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2010_7_a21/
LA  - ru
ID  - SEMR_2010_7_a21
ER  - 
%0 Journal Article
%A V. A. Topchii
%T Derivative of renewal density with infinite moment with $\alpha\in(0,1/2]$
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2010
%P 340-349
%V 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2010_7_a21/
%G ru
%F SEMR_2010_7_a21
V. A. Topchii. Derivative of renewal density with infinite moment with $\alpha\in(0,1/2]$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 7 (2010), pp. 340-349. http://geodesic.mathdoc.fr/item/SEMR_2010_7_a21/