Derivative of renewal density with infinite moment with $\alpha\in(0,1/2]$
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 7 (2010), pp. 340-349.

Voir la notice de l'article provenant de la source Math-Net.Ru

Increments of the renewal function related to the distributions with infinite means and regularly varying tails of orders $\alpha\in(0,1]$ were described by Erickson [4,6]. However, explicit asymptotics for the increments are known for $\alpha\in(1/2,1]$ only. For smaller $\alpha$ one can get, generally speaking, only the lower limit of the increments. There are many examples showing that this statement cannot be improved in general. Topchii [1] refine Erikson's results by describing sufficient conditions for regularity of the renewal measure density of the distributions with regularly varying tails with $\alpha\in(0,1/2]$. Here we propose the conditions for regularity of the renewal measure density derivative.
Keywords: renewal measure density, regularly varying tails
Mots-clés : stable distributions.
@article{SEMR_2010_7_a21,
     author = {V. A. Topchii},
     title = {Derivative of renewal density with infinite moment with $\alpha\in(0,1/2]$},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {340--349},
     publisher = {mathdoc},
     volume = {7},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2010_7_a21/}
}
TY  - JOUR
AU  - V. A. Topchii
TI  - Derivative of renewal density with infinite moment with $\alpha\in(0,1/2]$
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2010
SP  - 340
EP  - 349
VL  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2010_7_a21/
LA  - ru
ID  - SEMR_2010_7_a21
ER  - 
%0 Journal Article
%A V. A. Topchii
%T Derivative of renewal density with infinite moment with $\alpha\in(0,1/2]$
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2010
%P 340-349
%V 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2010_7_a21/
%G ru
%F SEMR_2010_7_a21
V. A. Topchii. Derivative of renewal density with infinite moment with $\alpha\in(0,1/2]$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 7 (2010), pp. 340-349. http://geodesic.mathdoc.fr/item/SEMR_2010_7_a21/

[1] V. Topchii, “Renewal measure density for distributions with regularly varying tails of order $\alpha\in(0,1/2]$”, Workshop on Branching Processes and Their Applications, Lecture Notes in Statistics, 197, 2010, 109–118

[2] A. Garsia, J. Lamperti, “A discrite renewal theorem with infinite mean”, Comment. Math. Helv., 37 (1962/63), 221–234 | DOI | MR

[3] J. L. Teugels, “Renewal theorems when the first or second moment is infinite”, Ann. Math. Stat., 39 (1968), 1210–1219 | DOI | MR | Zbl

[4] K. B. Erickson, “Strong renewal theorems with infinite mean”, Transactions of the American Mathematical Society, 151 (1970), 263–291 | DOI | MR | Zbl

[5] V. Feller, Vvedenie v teoriyu veroyatnostei i ee prilozheniya, v. 2, Mir, Moskva, 1984

[6] K. B. Erickson, “A renewal theorem for distribution on $\mathbb R^1$ without expectation”, Buletin Amer. Math. Society, 77 (1971), 406–410 | DOI | MR | Zbl

[7] M. S. Sgibnev, “Asimptotika plotnosti funktsii vosstanovleniya”, Sibirskii matematicheskii zhurnal, 20 (1979), 141–151 | MR | Zbl

[8] S. Albeverio, L. V. Bogachev, “Branching random walk in a catalytic medium. I. Basic equations”, Positivity, 4 (2000), 41–100 | DOI | MR | Zbl

[9] V. A. Topchii, V. A. Vatutin, “Two-dimensional limit theorem for a critical catalytic branching random walk”, Mathematics and Computer Science III, Trends Math., eds. M. Drmota, P. Flajolet, D. Gardy, B. Gittenberger, Birkhäuser, Basel, 2004, 387–395 | MR | Zbl

[10] V. A. Topchii, V. A. Vatutin, E. B. Yarovaya, “Catalytic branching random walk and queueing systems with random number of independent servers”, Theory of Probability and Mathematical Statistics, 69 (2003), 1–15 | MR

[11] I. A. Ibragimov, Yu. V. Linnik, Nezavisimye i statsionarno svyazannye sluchainye velichiny, Nauka, Moskva, 1965