Combining intuitionistic connectives and Routley negation
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 7 (2010), pp. 21-41.

Voir la notice de l'article provenant de la source Math-Net.Ru

Logic $N^*$ was defined as a logical framework for studying deductive bases of the well founded semantics (WFS) of logics programs with negation. Its semantical definition combines Kripke frames for intuitionistic logic with Routley's $*$-operator, which is used to interpret the negation operation. In this paper we develop algebraic semantics for $N^*$, describe its subdirectly irreducible algebraic models, describe completely the lattice of normal $HT^2$-extensions. The logic $HT^2$ is a finite valued extension of $N^*$, which is a deductive base of WFS. The last result can be used to check the maximality of this deductive base.
Keywords: Routley semantics, negation as modality, negation in logic programming, algebraic semantics
Mots-clés : Heyting–Ockham algebra.
@article{SEMR_2010_7_a2,
     author = {S. P. Odintsov},
     title = {Combining intuitionistic connectives and {Routley} negation},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {21--41},
     publisher = {mathdoc},
     volume = {7},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2010_7_a2/}
}
TY  - JOUR
AU  - S. P. Odintsov
TI  - Combining intuitionistic connectives and Routley negation
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2010
SP  - 21
EP  - 41
VL  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2010_7_a2/
LA  - en
ID  - SEMR_2010_7_a2
ER  - 
%0 Journal Article
%A S. P. Odintsov
%T Combining intuitionistic connectives and Routley negation
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2010
%P 21-41
%V 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2010_7_a2/
%G en
%F SEMR_2010_7_a2
S. P. Odintsov. Combining intuitionistic connectives and Routley negation. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 7 (2010), pp. 21-41. http://geodesic.mathdoc.fr/item/SEMR_2010_7_a2/

[1] M. Božić, K. Došen, “Models for normal intuitionistic modal logics”, Studia Logica, 43 (1984), 217–245 | DOI | MR | Zbl

[2] Cabalar P., Proceedings of ASP 01, 2001 AAAI Spring Symposium Series, 2001

[3] J. Berman, “Distributive lattices with an additional unary operation”, Aequationes Mathentaticae, 16 (1977), 165–171 | DOI | MR | Zbl

[4] S. Burris, H. P. Sankappanavar, A course in universal algebra, Graduate Texts in Math., 78, Springer, New York, 1981 | MR | Zbl

[5] P. Cabalar, S. P. Odintsov, D. Pearce, “Logical foundations of well-founded semantics”, Principles of Knowledge Representation and Reasoning, Proceedings of the 10th International Conference (KR2006), eds. P. Doherty et al., AAAI Press, Menlo Park, California, 2006, 25–36

[6] P. Cabalar, S. P. Odintsov, D. Pearce, A. Valverde, “Partial equilibrium logic”, Journal of Algorithms, 50 (2007), 305–331 | MR | Zbl

[7] P. Cabalar, S. P. Odintsov, D. Pearce, A logic for partial stable models and well-founded semantics, submitted to Journal of Logic and Computations

[8] J. Dietrich, Deductive bases of nonmonotonic inference operations, Technical report, NTZ Report, Universität Leipzig, 1994

[9] K. Dosen, “Negative modal operators in intuitionistic logic”, Publication de l'Instutute Mathematique, Nouv. Ser., 35 (1984), 3–14 | MR | Zbl

[10] K. Dosen, “Negation as a modal operator”, Reports on Mathematical Logic, 20 (1986), 15–28 | MR | Zbl

[11] K. Dosen, “Negation in the light of modal logic”, What is negation?, Appl. Log. Ser., 13, eds. D. Gabbay et al., Kluwer Academic Publishers, Dordrecht, 1999, 77–86 | MR | Zbl

[12] D. Gabbay, Semantical Investigations in Heyting's Intuitionistic Logic, Synthese Library, 148, Reidel, Dordrecht, 1981 | MR | Zbl

[13] R. Routley, V. Routley, “The semantics of first degree entailment”, Noûs, 6 (1972), 335–359 | MR

[14] R. Routley, “Semantical analyses of propositional systems of Fitch and Nelson”, Studia Logica, 33 (1974), 283–298 | DOI | MR | Zbl

[15] A. Urquhart, “Distributive lattices with a dual homomorphic operation”, Studia Logica, 38 (1979), 201–209 | DOI | MR | Zbl

[16] A. Urquhart, “Distributive lattices with a dual homomorphic operation. II”, Studia Logica, 40 (1981), 391–209 | DOI | MR

[17] F. Wolter, “Superintuitionistic companions of classical modal logics”, Studia Logica, 58 (1997), 229–259 | DOI | MR | Zbl