Resource consumption optimal and quasi-optimal controls for dynamic systems
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 7 (2010), pp. 166-249.

Voir la notice de l'article provenant de la source Math-Net.Ru

A numerical method of solving the problem on minimization of consumption resources for dynamic systems is proposed. The method is based on developing finite control translating a linear system in the fixed time from an initial state to a desired final state and allowing the structure of resource consumption optimal control to be calculated. The technique is given for an initial approximation to be specified an iterative algorithm of calculating the optimal control is considered. The system of linear algebraic equations is obtained that relates the increments of initial conditions for an adjoint system to the increments of phase coordinates about a given final state. A calculating algorithm is offered. The calculating process with sequence of the controls is proved to converge to the resource consumption optimal control. The radius of local convergence is found, its quadratic rate being determined. The results of modeling and calculating are presented. The method is generalized to disturbed dynamic systems. The features of real-time control are considered. An approximate method of solving the problem on minimization of resource consumption is proposed, estimation of closeness between the approximate and the optimal solutions being obtained with the technique to reduce their discrepancy. One more iterative algorithm using an approximate solution as initial one is considered for the problem in question to be solved.
Keywords: optimal control, finite control, resource consumption, linear system, phase trajectory, swit-ching moment, adjoint system, iteration, disturbance, real time, estimation of close-ness.
Mots-clés : quasi-optimal control, variation, convergence, approximal solution
@article{SEMR_2010_7_a17,
     author = {V. M. Aleksandrov},
     title = {Resource consumption optimal and quasi-optimal controls for dynamic systems},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {166--249},
     publisher = {mathdoc},
     volume = {7},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2010_7_a17/}
}
TY  - JOUR
AU  - V. M. Aleksandrov
TI  - Resource consumption optimal and quasi-optimal controls for dynamic systems
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2010
SP  - 166
EP  - 249
VL  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2010_7_a17/
LA  - ru
ID  - SEMR_2010_7_a17
ER  - 
%0 Journal Article
%A V. M. Aleksandrov
%T Resource consumption optimal and quasi-optimal controls for dynamic systems
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2010
%P 166-249
%V 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2010_7_a17/
%G ru
%F SEMR_2010_7_a17
V. M. Aleksandrov. Resource consumption optimal and quasi-optimal controls for dynamic systems. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 7 (2010), pp. 166-249. http://geodesic.mathdoc.fr/item/SEMR_2010_7_a17/

[1] Pontryagin L. S., Boltyanskii V. G., Gamkrelidze R. V., Mischenko E. F., Matematicheskaya teoriya optimalnykh protsessov, Nauka, M., 1976, 392 pp. | MR | Zbl

[2] Atans M., Falb P., Optimalnoe upravlenie, Mashinostroenie, M., 1968

[3] Ragab M. Z., “Time Fuel Optimal Deconpling Control Problem”, Adv. Model. Simul., 22:2 (1990), 1–16 | MR | Zbl

[4] Redmond J., Silverberg L., “Fuel Consumption in Optimal Control”, J. Guid. Control Dyn., 15:2 (1992), 424–430 | DOI | MR | Zbl

[5] Singh T., “Fuel/Time Optimal Control of the Benchmark Problem”, J. Guid. Control Dyn., 18:6 (1995), 1225–1231 | DOI | Zbl

[6] Sachs G., Dinkelmann M., “Reduction of Coolant Fuel Losses in Hypersonic Flight by Optimal Trajectory Control”, J. Guid. Control Dyn., 19:6 (1996), 1278–1284 | DOI | Zbl

[7] Ivanov V. A., Kozhevnikov S. A., “Odna zadacha sinteza optimalnogo po “raskhodu topliva” upravleniya lineinymi ob'ektami vtorogo poryadka s proizvodnymi upravleniya”, Izvestiya RAN. Teoriya i sistemy upravleniya, 1996, no. 4, 77–83 | Zbl

[8] Dewell L. D., Speyer J. L., “Fuel-Optimal Periodic Control and Regulation in Constrained Hypersonic Flight”, J. Guid. Control Dyn., 20:5 (1997), 923–932 | DOI | Zbl

[9] Liu S. W., Singh T., “Fuel/Time Optimal Control of Spacecraft Maneuvers”, J. Guid. Control Dyn., 20:2 (1997), 394–397 | DOI | Zbl

[10] Aleksandrov V. M., “Priblizhennoe reshenie lineinoi zadachi na minimum raskhoda resursov”, Zh. vychis. matem. i matem. fiziki, 39:3 (1999), 418–430 | MR | Zbl

[11] Shevchenko G. V., “Metod nakhozhdeniya optimalnogo po minimumu raskhoda resursov upravleniya dlya ob'ektov spetsialnogo vida”, Avtometriya, 42:2 (2006), 49–67 | MR

[12] Krylov I. A., Chernousko F. L., “O metode posledovatelnykh priblizhenii dlya resheniya zadach optimalnogo upravleniya”, Zh. vychisl. matem. i matem. fiz., 2:6 (1962), 1132–1139 | MR | Zbl

[13] Gindes V. B., “Odin metod posledovatelnykh priblizhenii dlya resheniya lineinykh zadach optimalnogo upravleniya”, Zh. vychisl. matem. i matem. fiz., 10:1 (1970), 216–223 | MR | Zbl

[14] Fedorenko R. P., Priblizhennoe reshenie zadach optimalnogo upravleniya, Nauka, M., 1978 | MR | Zbl

[15] Chernousko F. L., Kolmanovskii V. B., “Vychislitelnye i priblizhennye metody optimalnogo upravleniya”, Itogi nauki i tekhn. Ser. Mat. anal., 14, VINITI, M., 1977, 101–166

[16] Lyubushin A. A., “O primenenii modifikatsii metoda posledovatelnykh priblizhenii dlya resheniya zadach optimalnogo upravleniya”, Zh. vychisl. matem. i matem. fiz., 22:1 (1982), 30–35 | MR | Zbl

[17] Grachev N. I., Evtushenko Yu. G., “Biblioteka programm dlya resheniya zadach optimalnogo upravleniya”, Zh. vychisl. matem. i matem. fiz., 19:2 (1979), 367–387 | MR | Zbl

[18] Aleksandrov V. M., “Priblizhennoe reshenie zadach optimalnogo upravleniya”, Problemy kibernetiki, 41, 1984, 143–206 | Zbl

[19] Aleksandrov V. M., “Chislennyi metod resheniya lineinoi zadachi minimizatsii raskhoda resursov”, Cibirskii zhurnal vychislitelnoi matematiki, 12:3 (2009), 247–267 | Zbl

[20] Aleksandrov V. M., “Optimalnoe po raskhodu resursov upravlenie vozmuschennymi dinamicheskimi sistemami”, Vestnik NGU. Seriya: Matematika, mekhanika, informatika, 10:2 (2010), 3–24

[21] Aleksandrov V. M., “Optimalnoe po bystrodeistviyu pozitsionno-programmnoe upravlenie lineinymi dinamicheskimi sistemami”, Sibirskie elektronnye matematicheskie izvestiya, 6 (2009), 385–439 | MR

[22] Andreev Yu. N., “Algebraicheskie metody prostranstva sostoyanii v teorii upravleniya lineinymi sistemami (obzor zarubezhnoi literatury)”, Avtomatika i telemekhanika, 1977, no. 3, 5–50 | Zbl

[23] Smirnov E. Ya., Nekotorye zadachi matematicheskoi teorii upravleniya, Izd-vo LGU, L., 1981 | MR | Zbl

[24] Kalman R. E., “Mathematical description of linear dynamical systems”, SIAM J. Control, 1 (1963), 152–192 | MR | Zbl

[25] Gantmakher F. R., Teoriya matrits, Nauka, M., 1966 | MR