Recognition by spectrum for finite simple groups with orders having prime divisors at most 17
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 7 (2010), pp. 14-20.

Voir la notice de l'article provenant de la source Math-Net.Ru

The spectrum $\omega(G)$ of a group $G$ is the set of its element orders. We write $h(G)$ to denote the number of pairwise non-isomorphic finite groups $H$ with $\omega(H)=\omega(G)$. We say that $G$ is recognizable by spectrum if $h(G)=1$ and that $G$ is a group with solved recognition-by-spectrum problem if $h(G)$ is known. In the paper we prove that the groups $C_3(4)$ and $D_4(4)$ are recognizable by spectrum. It follows from this result that the recognition-by-spectrum problem is solved for all finite simple groups with orders having prime divisors at most $17$.
Keywords: finite group, spectrum of a group, recognition by spectrum.
Mots-clés : simple group
@article{SEMR_2010_7_a1,
     author = {I. B. Gorshkov},
     title = {Recognition by spectrum for finite simple groups with orders having prime divisors at most 17},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {14--20},
     publisher = {mathdoc},
     volume = {7},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2010_7_a1/}
}
TY  - JOUR
AU  - I. B. Gorshkov
TI  - Recognition by spectrum for finite simple groups with orders having prime divisors at most 17
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2010
SP  - 14
EP  - 20
VL  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2010_7_a1/
LA  - ru
ID  - SEMR_2010_7_a1
ER  - 
%0 Journal Article
%A I. B. Gorshkov
%T Recognition by spectrum for finite simple groups with orders having prime divisors at most 17
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2010
%P 14-20
%V 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2010_7_a1/
%G ru
%F SEMR_2010_7_a1
I. B. Gorshkov. Recognition by spectrum for finite simple groups with orders having prime divisors at most 17. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 7 (2010), pp. 14-20. http://geodesic.mathdoc.fr/item/SEMR_2010_7_a1/

[1] A. V. Zavarnitsine, “Finite simple groups with narrow prime spectrum”, Siberian electronic mathematical reports, 6 (2009), 1–12 | MR

[2] V. D. Mazurov, “Raspoznavanie konechnykh prostykh grupp po mnozhestvu poryadkov ikh elementov”, Algebra i logika, 37 (1998), 651–666 | MR | Zbl

[3] W. Shi, “A characteristic property of $PSL_2(7)$”, J. Austral. Math. Soc. Ser. A, 36 (1984), 354–356 | DOI | MR | Zbl

[4] V. D. Mazurov, “Gruppy s zadannym spektrom”, Izv. UrGU, Matematika i mekhanika, 36 (2005), 119–138 | MR | Zbl

[5] A. V. Vasilev, “O raspoznavaemosti vsekh konechnykh neabelevykh prostykh grupp, prostye deliteli kotorykh ne prevoskhodyat $13$”, Sib. mat. zhurn., 46 (2005), 315–324 | MR

[6] A. V. Vasilev, “O svyazi mezhdu stroeniem konechnoi gruppy i svoistvami ee grafa prostykh chisel”, Sib. mat. zhurn., 46 (2005), 511–522 | MR

[7] A. V. Vasilev, I. B. Gorshkov, “O raspoznavanii konechnykh prostykh grupp so svyaznym grafom prostykh chisel”, Sib. mat. zhurn., 50 (2009), 292–299 | MR

[8] V. D. Mazurov, “Kharakterizatsiya konechnykh grupp mnozhestvami poryadkov ikh elementov”, Algebra i logika, 36 (1997), 23–32 | MR | Zbl

[9] A. V. Vasilev, E. P. Vdovin, “Kriterii smezhnosti dvukh vershin v grafe prostykh chisel konechnoi prostoi gruppy”, Algebra i logika, 44 (2005), 682–725 | MR

[10] A. A. Buturlakin, Spektry konechnykh simplekticheskikh i ortogonalnykh grupp, preprint No 204, IM SO RAN, Novosibirsk, 2008 | MR

[11] A. V. Zavarnitsin, V. D. Mazurov, “O poryadkakh elementov v nakrytiyakh prostykh grupp $L_n(q)$ i $U_n(q)$”, Trudy In-ta matem. i mekhan. UrO RAN, 13, 2007, 89–98

[12] R. Carter, Simple groups of Lie type, John Wiley and Sons, London, 1972 | MR | Zbl

[13] D. Gorenstein, R. Lyons, R. Solomon, The classification of the finite simple groups, Number 3, Mathematical Surveys and Monographs, 40, American Mathematical Society, Providence, Rhode Island, 1998 | MR | Zbl