Recognition by spectrum for finite simple groups with orders having prime divisors at most 17
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 7 (2010), pp. 14-20

Voir la notice de l'article provenant de la source Math-Net.Ru

The spectrum $\omega(G)$ of a group $G$ is the set of its element orders. We write $h(G)$ to denote the number of pairwise non-isomorphic finite groups $H$ with $\omega(H)=\omega(G)$. We say that $G$ is recognizable by spectrum if $h(G)=1$ and that $G$ is a group with solved recognition-by-spectrum problem if $h(G)$ is known. In the paper we prove that the groups $C_3(4)$ and $D_4(4)$ are recognizable by spectrum. It follows from this result that the recognition-by-spectrum problem is solved for all finite simple groups with orders having prime divisors at most $17$.
Keywords: finite group, spectrum of a group, recognition by spectrum.
Mots-clés : simple group
@article{SEMR_2010_7_a1,
     author = {I. B. Gorshkov},
     title = {Recognition by spectrum for finite simple groups with orders having prime divisors at most 17},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {14--20},
     publisher = {mathdoc},
     volume = {7},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2010_7_a1/}
}
TY  - JOUR
AU  - I. B. Gorshkov
TI  - Recognition by spectrum for finite simple groups with orders having prime divisors at most 17
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2010
SP  - 14
EP  - 20
VL  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2010_7_a1/
LA  - ru
ID  - SEMR_2010_7_a1
ER  - 
%0 Journal Article
%A I. B. Gorshkov
%T Recognition by spectrum for finite simple groups with orders having prime divisors at most 17
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2010
%P 14-20
%V 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2010_7_a1/
%G ru
%F SEMR_2010_7_a1
I. B. Gorshkov. Recognition by spectrum for finite simple groups with orders having prime divisors at most 17. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 7 (2010), pp. 14-20. http://geodesic.mathdoc.fr/item/SEMR_2010_7_a1/