On automorphisms of a~strongly regular graph $(75,32,10,16)$
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 7 (2010), pp. 1-13.

Voir la notice de l'article provenant de la source Math-Net.Ru

The automorphism group of a strongly regular graph with parameters $(75,32,10,16)$ is studied. As an application of the obtained results, we compute the orders and fixed-point subgraphs of automorphisms for $pG_2(4,7)$.
Keywords: strongly regular graph
Mots-clés : automorphism.
@article{SEMR_2010_7_a0,
     author = {K. S. Efimov},
     title = {On automorphisms of a~strongly regular graph $(75,32,10,16)$},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1--13},
     publisher = {mathdoc},
     volume = {7},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2010_7_a0/}
}
TY  - JOUR
AU  - K. S. Efimov
TI  - On automorphisms of a~strongly regular graph $(75,32,10,16)$
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2010
SP  - 1
EP  - 13
VL  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2010_7_a0/
LA  - ru
ID  - SEMR_2010_7_a0
ER  - 
%0 Journal Article
%A K. S. Efimov
%T On automorphisms of a~strongly regular graph $(75,32,10,16)$
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2010
%P 1-13
%V 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2010_7_a0/
%G ru
%F SEMR_2010_7_a0
K. S. Efimov. On automorphisms of a~strongly regular graph $(75,32,10,16)$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 7 (2010), pp. 1-13. http://geodesic.mathdoc.fr/item/SEMR_2010_7_a0/

[1] Makhnev A. A., “O grafakh, okrestnosti vershin kotorykh silno regulyarny s $k=2\mu$”, Matem. sbornik, 191:7 (2000), 89–104 | MR | Zbl

[2] Brouwer A. E., Haemers W. H., “The Gewirtz graph: an exercize in the theory of graph spectra”, Europ. J. Comb., 14 (1993), 397–407 | DOI | MR | Zbl

[3] Makhnev A. A., “O rasshireniyakh chastichnykh geometrii, soderzhaschikh malye $\mu$-podgrafy”, Diskr. analiz i issled. operatsii, 3:3 (1996), 71–83 | MR | Zbl

[4] Cameron P., Permutation Groups, London Math. Soc. Student Texts, 45, Cambr. Univ. Press, 1999, 220 pp. | Zbl

[5] Macay M., Siran J., “Search for properties of the missing Moore graph”, Linear Algebra and its Appl., 432:9 (2010), 2381–2398 | DOI | MR