Estimates of Berry--Esseen type for probabilities of large deviations under violation of Cram\'er condition
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 6 (2009), pp. 191-198.

Voir la notice de l'article provenant de la source Math-Net.Ru

Two-sided estimates for probabilities of large deviations for sums of independent random variables with finite variances are obtained. All asymptotics of the probabilities are described in terms of deviation function $\Lambda(x,y)$ of a sum of truncated random variables. All error terms are explicitly estimated by a modified Lyapunov ratio $L(H(x),y)$.
Keywords: probabilities of large deviations, deviation function, Lyapunov ratio.
@article{SEMR_2009_6_a9,
     author = {A. I. Sakhanenko},
     title = {Estimates of {Berry--Esseen} type for probabilities of large deviations under violation of {Cram\'er} condition},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {191--198},
     publisher = {mathdoc},
     volume = {6},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2009_6_a9/}
}
TY  - JOUR
AU  - A. I. Sakhanenko
TI  - Estimates of Berry--Esseen type for probabilities of large deviations under violation of Cram\'er condition
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2009
SP  - 191
EP  - 198
VL  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2009_6_a9/
LA  - ru
ID  - SEMR_2009_6_a9
ER  - 
%0 Journal Article
%A A. I. Sakhanenko
%T Estimates of Berry--Esseen type for probabilities of large deviations under violation of Cram\'er condition
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2009
%P 191-198
%V 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2009_6_a9/
%G ru
%F SEMR_2009_6_a9
A. I. Sakhanenko. Estimates of Berry--Esseen type for probabilities of large deviations under violation of Cram\'er condition. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 6 (2009), pp. 191-198. http://geodesic.mathdoc.fr/item/SEMR_2009_6_a9/

[1] V. V. Petrov, Summy nezavisimykh sluchainykh velichin, Nauka, Moskva, 1972 | MR

[2] L. V. Rozovskii, “Veroyatnosti bolshikh uklonenii summ nezavisimykh sluchainykh velichin s obschei funktsiei raspredeleniya iz oblasti prityazheniya normalnogo zakona”, Teoriya veroyatnostei i ee primeneniya, 34:4 (1989), 686–705 | MR

[3] A. I. Sakhanenko, “Otsenki tipa Berri–Esseena dlya veroyatnostei bolshikh uklonenii”, Sib. mat. zhurnal, 32:4 (1991), 133–142 | MR

[4] I. A. Ibragimov, Yu. V. Linnik, Nezavisimye i statsionarno svyazannye velichiny, Nauka, Moskva, 1965

[5] A. A. Borovkov, A. A. Mogulskii, “Integro-lokalnye i integralnye teoremy dlya summ sluchainykh velichin s semieksponentsialnymi raspredeleniyami”, Sib. mat. zhurnal, 47:6 (2006), 1219–1257 | MR